Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Approximation algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Epsilon terms == In the literature, an approximation ratio for a maximization (minimization) problem of ''c'' - ϵ (min: ''c'' + ϵ) means that the algorithm has an approximation ratio of ''c'' ∓ ϵ for arbitrary ϵ > 0 but that the ratio has not (or cannot) be shown for ϵ = 0. An example of this is the optimal inapproximability — inexistence of approximation — ratio of 7 / 8 + ϵ for satisfiable [[MAX-3SAT]] instances due to [[Johan Håstad]].<ref name="hastad99someoptimal">{{cite journal|title=Some Optimal Inapproximability Results|journal=Journal of the ACM|volume=48|issue=4|pages=798–859|year=1999|url=http://www.nada.kth.se/~johanh/optimalinap.ps|author=Johan Håstad|doi=10.1145/502090.502098|citeseerx=10.1.1.638.2808|s2cid=5120748|author-link=Johan Håstad}}</ref> As mentioned previously, when ''c'' = 1, the problem is said to have a [[polynomial-time approximation scheme]]. An ϵ-term may appear when an approximation algorithm introduces a multiplicative error and a constant error while the minimum optimum of instances of size ''n'' goes to infinity as ''n'' does. In this case, the approximation ratio is ''c'' ∓ ''k'' / OPT = ''c'' ∓ o(1) for some constants ''c'' and ''k''. Given arbitrary ϵ > 0, one can choose a large enough ''N'' such that the term ''k'' / OPT < ϵ for every ''n ≥ N''. For every fixed ϵ, instances of size ''n < N'' can be solved by brute force, thereby showing an approximation ratio — existence of approximation algorithms with a guarantee — of ''c'' ∓ ϵ for every ϵ > 0.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)