Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arrow's impossibility theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Formal statement === Let <math>A</math> be a set of ''alternatives''. A voter's [[preference (economics)|preferences]] over <math>A</math> are a [[Connected relation|complete]] and [[Transitive relation|transitive]] [[binary relation]] on <math>A</math> (sometimes called a [[total preorder]]), that is, a subset <math>R</math> of <math>A \times A</math> satisfying: # (Transitivity) If <math>(\mathbf{a}, \mathbf{b})</math> is in <math>R</math> and <math>(\mathbf{b}, \mathbf{c})</math> is in <math>R</math>, then <math>(\mathbf{a}, \mathbf{c})</math> is in <math>R</math>, # (Completeness) At least one of <math>(\mathbf{a}, \mathbf{b})</math> or <math>(\mathbf{b}, \mathbf{a})</math> must be in <math>R</math>. The element <math>(\mathbf{a}, \mathbf{b})</math> being in <math>R</math> is interpreted to mean that alternative <math>\mathbf{a}</math> is preferred to alternative <math>\mathbf{b}</math>. This situation is often denoted <math>\mathbf{a} \succ \mathbf{b}</math> or <math>\mathbf{a}R\mathbf{b}</math>. Denote the set of all preferences on <math>A</math> by <math>\Pi(A)</math>. Let <math>N</math> be a positive integer. An [[Ranked voting|''ordinal (ranked)'']] ''social welfare function'' is a function<ref name="Arrow1950"/> : <math> \mathrm{F} : \Pi(A)^N \to \Pi(A) </math> which aggregates voters' preferences into a single preference on <math>A</math>. An <math>N</math>-[[tuple]] <math>(R_1, \ldots, R_N) \in \Pi(A)^N</math> of voters' preferences is called a ''preference profile''. '''Arrow's impossibility theorem''': If there are at least three alternatives, then there is no social welfare function satisfying all three of the conditions listed below:<ref name="Gean">{{cite journal |last=Geanakoplos |first=John |year=2005 |title=Three Brief Proofs of Arrow's Impossibility Theorem |url=https://cowles.yale.edu/sites/default/files/files/pub/d11/d1123-r4.pdf |url-status=live |journal=[[Economic Theory (journal)|Economic Theory]] |volume=26 |issue=1 |pages=211β215 |citeseerx=10.1.1.193.6817 |doi=10.1007/s00199-004-0556-7 |jstor=25055941 |s2cid=17101545 |archive-url=https://ghostarchive.org/archive/20221009/https://cowles.yale.edu/sites/default/files/files/pub/d11/d1123-r4.pdf |archive-date=2022-10-09}}</ref> ; [[Pareto efficiency]] : If alternative <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> for all orderings <math>R_1, \ldots, R_N</math>, then <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>F(R_1, R_2, \ldots, R_N)</math>.<ref name="Arrow1950" /> ; [[Dictatorship mechanism|Non-dictatorship]] : There is no individual <math>i</math> whose preferences always prevail. That is, there is no <math>i \in \{1, \ldots, N\}</math> such that for all <math>(R_1, \ldots, R_N) \in \Pi(A)^N</math> and all <math>\mathbf{a}</math> and <math>\mathbf{b}</math>, when <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>R_i</math> then <math>\mathbf{a}</math> is preferred to <math>\mathbf{b}</math> by <math>F(R_1, R_2, \ldots, R_N)</math>.<ref name="Arrow1950" /> ; [[Independence of irrelevant alternatives]] : For two preference profiles <math>(R_1, \ldots, R_N)</math> and <math>(S_1, \ldots, S_N)</math> such that for all individuals <math>i</math>, alternatives <math>\mathbf{a}</math> and <math>\mathbf{b}</math> have the same order in <math>R_i</math> as in <math>S_i</math>, alternatives <math>\mathbf{a}</math> and <math>\mathbf{b}</math> have the same order in <math>F(R_1, \ldots, R_N)</math> as in <math>F(S_1, \ldots, S_N)</math>.<ref name="Arrow1950" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)