Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Axiom schema
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== * {{Citation|last=Corcoran|first=John|author-link=John Corcoran (logician)|year=2006|title=Schemata: the Concept of Schema in the History of Logic|journal=Bulletin of Symbolic Logic|volume=12|issue=2 |pages=219β240|doi=10.2178/bsl/1146620060 |s2cid=6909703 |url=https://philpapers.org/archive/CORSTC.pdf}}. * {{Cite SEP |url-id=schema |title=Schema |last=Corcoran |first=John |date=2016}} * {{Citation |last=Mendelson |first=Elliott |author-link=Elliott Mendelson |year=1997 |title=An Introduction to Mathematical Logic |edition=4th |publisher=Chapman & Hall |isbn=0-412-80830-7}}. * {{Citation |last = Montague | first = Richard |contribution = Semantic Closure and Non-Finite Axiomatizability I | editor = Samuel R. Buss | title = Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics | publisher = Pergamon Press | publication-date = 1961 | pages = 45β69}}. * {{Citation |last=Potter |first=Michael |title=Set Theory and Its Philosophy |publisher=Oxford University Press |year=2004 |isbn=9780199269730}}. * {{Citation |last=Ryll-Nardzewski |first=CzesΕaw |title=The role of the axiom of induction in elementary arithmetic |url=http://matwbn.icm.edu.pl/ksiazki/fm/fm39/fm39119.pdf |journal=[[Fundamenta Mathematicae]] |volume=39 |pages=239β263 |year=1952|doi=10.4064/fm-39-1-239-263 }}. {{Set theory}} {{Mathematical logic}} [[Category:Formal systems]] [[Category:Mathematical axioms|*]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)