Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generating function=== The exponential partial Bell polynomials can be defined by the double series expansion of its generating function: :<math> \begin{align} \Phi(t,u) &= \exp\left( u \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right) = \sum_{n\geq k \geq 0} B_{n,k}(x_1,\ldots,x_{n-k+1}) \frac{t^n}{n!} u^k\\ &= 1 + \sum_{n=1}^\infty \frac{t^n}{n!} \sum_{k=1}^n u^k B_{n,k}(x_1,\ldots,x_{n-k+1}). \end{align} </math> In other words, by what amounts to the same, by the series expansion of the ''k''-th power: :<math> \frac{1}{k!}\left( \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right)^k = \sum_{n=k}^\infty B_{n,k}(x_1,\ldots,x_{n-k+1}) \frac{t^n}{n!}, \qquad k = 0, 1, 2, \ldots </math> The complete exponential Bell polynomial is defined by <math>\Phi(t,1)</math>, or in other words: :<math> \Phi(t,1) = \exp\left( \sum_{j=1}^\infty x_j \frac{t^j}{j!} \right) = \sum_{n=0}^\infty B_n(x_1,\ldots, x_n) \frac{t^n}{n!}.</math> Thus, the ''n''-th complete Bell polynomial is given by :<math> B_n(x_1,\ldots, x_n) = \left. \left(\frac{\partial}{\partial t}\right)^n \exp\left( \sum_{j=1}^n x_j \frac{t^j}{j!} \right) \right|_{t=0}. </math> Likewise, the ''ordinary'' partial Bell polynomial can be defined by the generating function :<math> \hat{\Phi}(t,u) = \exp \left( u \sum_{j=1}^\infty x_j t^j \right) = \sum_{n\geq k\geq 0} \hat{B}_{n,k}(x_1,\ldots,x_{n-k+1}) t^n \frac{u^k}{k!}.</math> Or, equivalently, by series expansion of the ''k''-th power: :<math>\left(\sum_{j=1}^\infty x_j t^j\right)^k = \sum_{n=k}^\infty \hat{B}_{n,k}(x_1, \ldots, x_{n-k+1}) t^n. </math> See also [[Generating function transformation#Powers of an OGF and composition with functions|generating function transformations]] for Bell polynomial generating function expansions of compositions of sequence [[generating functions]] and [[Exponentiation|powers]], [[logarithm]]s, and [[exponential function|exponentials]] of a sequence generating function. Each of these formulas is cited in the respective sections of Comtet.{{Sfn|Comtet|1974}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)