Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bio-inspired computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Brain-inspired chip ==== Broadly speaking, brain-inspired chip refers to a chip designed with reference to the structure of human brain neurons and the cognitive mode of human brain. Obviously, the "[[neuromorphic]] chip" is a brain-inspired chip that focuses on the design of the chip structure with reference to the human brain neuron model and its tissue structure, which represents a major direction of brain-inspired chip research. Along with the rise and development of โbrain plansโ in various countries, a large number of research results on neuromorphic chips have emerged, which have received extensive international attention and are well known to the academic community and the industry. For example, EU-backed [[SpiNNaker]] and BrainScaleS, Stanford's [[Neurogrid]], IBM's [[TrueNorth]], and Qualcomm's [[Zeroth (software)|Zeroth]]. TrueNorth is a brain-inspired chip that IBM has been developing for nearly 10 years. The US DARPA program has been funding IBM to develop pulsed neural network chips for intelligent processing since 2008. In 2011, IBM first developed two cognitive silicon prototypes by simulating brain structures that could learn and process information like the brain. Each neuron of a brain-inspired chip is cross-connected with massive parallelism. In 2014, IBM released a second-generation brain-inspired chip called "TrueNorth." Compared with the first generation brain-inspired chips, the performance of the TrueNorth chip has increased dramatically, and the number of neurons has increased from 256 to 1 million; the number of programmable synapses has increased from 262,144 to 256 million; Subsynaptic operation with a total power consumption of 70 mW and a power consumption of 20 mW per square centimeter. At the same time, TrueNorth handles a nuclear volume of only 1/15 of the first generation of brain chips. At present, IBM has developed a prototype of a neuron computer that uses 16 TrueNorth chips with real-time video processing capabilities.<ref>{{cite web|url=http://www.eepw.com.cn/article/271641.htm|title=็พๅฝ็ฑป่่ฏ็ๅๅฑๅ็จ|publisher=[[Electronic Engineering & Product World]]}}</ref> The super-high indicators and excellence of the TrueNorth chip have caused a great stir in the academic world at the beginning of its release. In 2012, the Institute of Computing Technology of the Chinese Academy of Sciences(CAS) and the French Inria collaborated to develop the first chip in the world to support the deep neural network processor architecture chip "Cambrian".<ref>{{cite journal | doi=10.1145/2654822.2541967 | title=Dian ''Nao'' | year=2014 | last1=Chen | first1=Tianshi | last2=Du | first2=Zidong | last3=Sun | first3=Ninghui | last4=Wang | first4=Jia | last5=Wu | first5=Chengyong | last6=Chen | first6=Yunji | last7=Temam | first7=Olivier | journal=ACM SIGARCH Computer Architecture News | volume=42 | pages=269โ284 | doi-access=free }}</ref> The technology has won the best international conferences in the field of computer architecture, ASPLOS and MICRO, and its design method and performance have been recognized internationally. The chip can be used as an outstanding representative of the research direction of brain-inspired chips.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)