Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
C-symmetry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Charge conjugation in the chiral basis==== Taking the [[Gamma matrices#Weyl representation|Weyl representation]] of the gamma matrices, one may write a (now taken to be massive) Dirac spinor as :<math>\psi = \begin{pmatrix} \psi_\text{L}\\ \psi_\text{R} \end{pmatrix}</math> The corresponding dual (anti-particle) field is :<math>\overline{\psi}^\textsf{T} = \left( \psi^\dagger \gamma^0 \right)^\textsf{T} = \begin{pmatrix} 0 & I \\ I & 0\end{pmatrix} \begin{pmatrix} \psi_\text{L}^* \\ \psi_\text{R}^* \end{pmatrix} = \begin{pmatrix} \psi_\text{R}^* \\ \psi_\text{L}^* \end{pmatrix} </math> The charge-conjugate spinors are :<math>\psi^c = \begin{pmatrix} \psi_\text{L}^c\\ \psi_\text{R}^c \end{pmatrix} = \eta_c C \overline\psi^\textsf{T} = \eta_c \begin{pmatrix} -i\sigma^2 & 0 \\ 0 & i\sigma^2\end{pmatrix} \begin{pmatrix} \psi_\text{R}^* \\ \psi_\text{L}^* \end{pmatrix} = \eta_c \begin{pmatrix} -i\sigma^2\psi_\text{R}^* \\ i\sigma^2\psi_\text{L}^* \end{pmatrix} </math> where, as before, <math>\eta_c</math> is a phase factor that can be taken to be <math>\eta_c=1.</math> Note that the left and right states are inter-changed. This can be restored with a parity transformation. Under [[P-symmetry|parity]], the Dirac spinor transforms as :<math>\psi\left(t, \vec x\right) \mapsto \psi^p\left(t, \vec x\right) = \gamma^0 \psi\left(t, -\vec x\right)</math> Under combined charge and parity, one then has :<math>\psi\left(t, \vec x\right) \mapsto \psi^{cp}\left(t, \vec x\right) = \begin{pmatrix} \psi_\text{L}^{cp} \left(t, \vec x\right)\\ \psi_\text{R}^{cp}\left(t,\vec x\right) \end{pmatrix} = \eta_c \begin{pmatrix} -i\sigma^2\psi_\text{L}^*\left(t, -\vec x\right) \\ i\sigma^2\psi_\text{R}^*\left(t, -\vec x\right) \end{pmatrix}</math> Conventionally, one takes <math>\eta_c = 1</math> globally. See however, the note below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)