Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit expressions== Using the complex number exponentiation definition of the Chebyshev polynomial, one can derive the following expression: <math display="block"> T_n(x) = \dfrac{1}{2} \bigg( \Big(x-\sqrt{x^2-1} \Big)^n + \Big(x+\sqrt{x^2-1} \Big)^n \bigg) \quad \text{ for } x \in \mathbb {R},</math> <math display="block"> T_n(x) = \dfrac{1}{2} \bigg( \Big(x-\sqrt{x^2-1} \Big)^n + \Big(x-\sqrt{x^2-1} \Big)^{-n} \bigg) \quad \text{ for } x \in \mathbb {R}.</math> The two are equivalent because <math>(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1}) = 1</math>. An explicit form of the Chebyshev polynomial in terms of monomials {{math|''x''<sup>''k''</sup>}} follows from [[de Moivre's formula]]: <math display="block">T_n(\cos(\theta)) = \operatorname{Re}(\cos n \theta + i \sin n \theta) = \operatorname{Re}((\cos \theta + i \sin \theta)^n),</math> where {{math|Re}} denotes the [[Complex number#Notation|real part]] of a complex number. Expanding the formula, one gets <math display="block">(\cos \theta + i \sin \theta)^n = \sum\limits_{j=0}^n \binom{n}{j} i^j \sin^j \theta \cos^{n-j} \theta.</math> The real part of the expression is obtained from summands corresponding to even indices. Noting <math>i^{2j} = (-1)^j</math> and <math>\sin^{2j} \theta = (1-\cos^2 \theta)^j</math>, one gets the explicit formula: <math display="block">\cos n \theta = \sum\limits_{j=0}^{\lfloor n / 2 \rfloor} \binom{n}{2j} (\cos^2 \theta - 1)^j \cos^{n-2j} \theta,</math> which in turn means that <math display="block">T_n(x) = \sum\limits_{j=0}^{\lfloor n / 2 \rfloor} \binom{n}{2j} (x^2-1)^j x^{n-2j}.</math> This can be written as a {{math|<sub>2</sub>''F''<sub>1</sub>}} [[hypergeometric function]]: <math display="block">\begin{align} T_n(x) & = \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{n}{2k} \left (x^2-1 \right )^k x^{n-2k} \\ & = x^n \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \binom{n}{2k} \left (1 - x^{-2} \right )^k \\ & = \frac{n}{2} \sum_{k=0}^{\left \lfloor \frac{n}{2} \right \rfloor}(-1)^k \frac{(n-k-1)!}{k!(n-2k)!}~(2x)^{n-2k} \quad \text{ for } n > 0 \\ \\ & = n \sum_{k=0}^{n}(-2)^{k} \frac{(n+k-1)!} {(n-k)!(2k)!}(1 - x)^k \quad \text{ for } n > 0 \\ \\ & = {}_2F_1\!\left(-n,n;\tfrac 1 2; \tfrac{1}{2}(1-x)\right) \\ \end{align}</math> with inverse<ref name=Cody>{{cite journal |first1=W. J. |last1=Cody |title=A survey of practical rational and polynomial approximation of functions |year=1970 |journal=SIAM Review |volume=12 |number=3 |pages=400β423 |doi=10.1137/1012082}}</ref><ref name=Mathar>{{cite journal | last=Mathar | first=Richard J. | year=2006 | title=Chebyshev series expansion of inverse polynomials | journal=Journal of Computational and Applied Mathematics | volume=196 | issue=2 | pages=596β607 | doi=10.1016/j.cam.2005.10.013 | doi-access=free | arxiv=math/0403344 }}</ref> <math display="block">x^n = 2^{1-n}\mathop{{\sum}'}^n_{j=0\atop j \equiv n \pmod 2} \!\!\binom{n}{\tfrac{n-j}{2}}\!\;T_j(x),</math> where the prime at the summation symbol indicates that the contribution of {{math|''j'' {{=}} 0}} needs to be halved if it appears. A related expression for {{math|''T''<sub>''n''</sub>}} as a sum of monomials with binomial coefficients and powers of two is <math display="block"> T_n(x) = \sum\limits_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^m \left(\binom{n - m}{m} + \binom{n - m - 1}{n - 2m}\right) \cdot 2^{n-2m-1} \cdot x^{n-2m}.</math> Similarly, {{math|''U''<sub>''n''</sub>}} can be expressed in terms of hypergeometric functions: <math display="block">\begin{align} U_n(x) &= \frac{\left (x+\sqrt{x^2-1} \right )^{n+1} - \left (x-\sqrt{x^2-1} \right )^{n+1}}{2\sqrt{x^2-1}} \\ &= \sum_{k=0}^{\left \lfloor {n}/{2} \right \rfloor} \binom{n+1}{2k+1} \left (x^2-1 \right )^k x^{n-2k} \\ &= x^n \sum_{k=0}^{\left \lfloor {n}/{2} \right \rfloor} \binom{n+1}{2k+1} \left (1 - x^{-2} \right )^k \\ &= \sum_{k=0}^{\left \lfloor {n}/{2} \right \rfloor} \binom{2k-(n+1)}{k}~(2x)^{n-2k} & \text{ for } n > 0 \\ &= \sum_{k=0}^{\left \lfloor {n}/{2} \right \rfloor} (-1)^k \binom{n-k}{k}~(2x)^{n-2k} & \text{ for } n > 0 \\ &= \sum_{k=0}^{n}(-2)^{k} \frac{(n+k+1)!} {(n-k)!(2k+1)!}(1 - x)^k & \text{ for } n > 0 \\ &= (n + 1)\, {}_2F_1\big(-n, n + 2; \tfrac{3}{2}; \tfrac{1}{2}(1 - x)\big). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)