Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chernoff bound
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Additive form (absolute error) === The following theorem is due to [[Wassily Hoeffding]]<ref>{{cite journal |last1=Hoeffding |first1=W. |year=1963 |title=Probability Inequalities for Sums of Bounded Random Variables |journal=[[Journal of the American Statistical Association]] |volume=58 |issue=301 |pages=13–30 |doi=10.2307/2282952 |jstor=2282952 |url=http://repository.lib.ncsu.edu/bitstream/1840.4/2170/1/ISMS_1962_326.pdf }}</ref> and hence is called the Chernoff–Hoeffding theorem. :'''Chernoff–Hoeffding theorem.''' Suppose {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} are [[i.i.d.]] random variables, taking values in {{math|{0, 1}.}} Let {{math|''p'' {{=}} E[''X''<sub>1</sub>]}} and {{math|''ε'' > 0}}. ::<math>\begin{align} \Pr \left (\frac{1}{n} \sum X_i \geq p + \varepsilon \right ) \leq \left (\left (\frac{p}{p + \varepsilon}\right )^{p+\varepsilon} {\left (\frac{1 - p}{1-p- \varepsilon}\right )}^{1 - p- \varepsilon}\right )^n &= e^{-D(p+\varepsilon\parallel p) n} \\ \Pr \left (\frac{1}{n} \sum X_i \leq p - \varepsilon \right ) \leq \left (\left (\frac{p}{p - \varepsilon}\right )^{p-\varepsilon} {\left (\frac{1 - p}{1-p+ \varepsilon}\right )}^{1 - p+ \varepsilon}\right )^n &= e^{-D(p-\varepsilon\parallel p) n} \end{align}</math> :where ::<math> D(x\parallel y) = x \ln \frac{x}{y} + (1-x) \ln \left (\frac{1-x}{1-y} \right )</math> :is the [[Kullback–Leibler divergence]] between [[Bernoulli distribution|Bernoulli distributed]] random variables with parameters ''x'' and ''y'' respectively. If {{math|''p'' ≥ {{sfrac|1|2}},}} then <math>D(p+\varepsilon\parallel p)\ge \tfrac{\varepsilon^2}{2p(1-p)}</math> which means ::<math> \Pr\left ( \frac{1}{n}\sum X_i>p+x \right ) \leq \exp \left (-\frac{x^2n}{2p(1-p)} \right ).</math> A simpler bound follows by relaxing the theorem using {{math|''D''(''p'' + ''ε'' {{!!}} ''p'') ≥ 2''ε''<sup>2</sup>}}, which follows from the [[Convex function|convexity]] of {{math|''D''(''p'' + ''ε'' {{!!}} ''p'')}} and the fact that :<math>\frac{d^2}{d\varepsilon^2} D(p+\varepsilon\parallel p) = \frac{1}{(p+\varepsilon)(1-p-\varepsilon) } \geq 4 =\frac{d^2}{d\varepsilon^2}(2\varepsilon^2).</math> This result is a special case of [[Hoeffding's inequality]]. Sometimes, the bounds :<math> \begin{align} D( (1+x) p \parallel p) \geq \frac{1}{4} x^2 p, & & & {-\tfrac{1}{2}} \leq x \leq \tfrac{1}{2},\\[6pt] D(x \parallel y) \geq \frac{3(x-y)^2}{2(2y+x)}, \\[6pt] D(x \parallel y) \geq \frac{(x-y)^2}{2y}, & & & x \leq y,\\[6pt] D(x \parallel y) \geq \frac{(x-y)^2}{2x}, & & & x \geq y \end{align} </math> which are stronger for {{math|''p'' < {{sfrac|1|8}},}} are also used.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)