Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computational complexity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Asymptotic complexity== {{see also|Asymptotic computational complexity}} It is generally difficult to compute precisely the worst-case and the average-case complexity. In addition, these exact values provide little practical application, as any change of computer or of model of computation would change the complexity somewhat. Moreover, the resource use is not critical for small values of {{mvar|n}}, and this makes that, for small {{mvar|n}}, the ease of implementation is generally more interesting than a low complexity. For these reasons, one generally focuses on the behavior of the complexity for large {{mvar|n}}, that is on its [[asymptotic analysis|asymptotic behavior]] when {{mvar|n}} tends to the infinity. Therefore, the complexity is generally expressed by using [[big O notation]]. For example, the usual algorithm for integer [[multiplication]] has a complexity of <math>O(n^2),</math> this means that there is a constant <math>c_u</math> such that the multiplication of two integers of at most {{mvar|n}} digits may be done in a time less than <math>c_un^2.</math> This bound is ''sharp'' in the sense that the worst-case complexity and the average-case complexity are <math>\Omega(n^2),</math> which means that there is a constant <math>c_l</math> such that these complexities are larger than <math>c_ln^2.</math> The [[radix]] does not appear in these complexity, as changing of radix changes only the constants <math>c_u</math> and <math>c_l.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)