Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Unitary elements === If <math>a</math> is a self-adjoint element of a C*-algebra <math>\mathcal{A}</math> with unit element <math>e</math>, then <math>u = \mathrm{e}^{\mathrm{i} a}</math> is unitary, where <math>\mathrm{i}</math> denotes the [[imaginary unit]]. Conversely, if <math>u \in \mathcal{A}_U</math> is an unitary element, with the restriction that the spectrum is a [[Subset|proper subset]] of the unit circle, i.e. <math>\sigma(u) \subsetneq \mathbb{T}</math>, there exists a self-adjoint element <math>a \in \mathcal{A}_{sa}</math> with {{nowrap|<math>u = \mathrm{e}^{\mathrm{i} a}</math>.{{sfn|Kadison|Ringrose|1983|pages=274-275}}}} ''Proof.''{{sfn|Kadison|Ringrose|1983|pages=274-275}} It is <math>u = f(a)</math> with <math>f \colon \R \to \C,\ x \mapsto \mathrm{e}^{\mathrm{i}x}</math>, since <math>a</math> is self-adjoint, it follows that <math>\sigma(a) \subset \R</math>, i.e. <math>f</math> is a function on the spectrum of {{nowrap|<math>a</math>.}} Since <math>f\cdot \overline{f} = \overline{f}\cdot f = 1</math>, using the functional calculus <math>uu^* = u^*u = e</math> follows, i.e. <math>u</math> is unitary. Since for the other statement there is a <math>z_0 \in \mathbb{T}</math>, such that <math>\sigma(u) \subseteq \{ \mathrm{e}^{\mathrm{i} z} \mid z_0 \leq z \leq z_0 + 2 \pi \}</math> the function <math>f(\mathrm{e}^{\mathrm{i} z}) = z</math> is a real-valued continuous function on the spectrum <math>\sigma(u)</math> for <math>z_0 \leq z \leq z_0 + 2 \pi</math>, such that <math>a = f(u)</math> is a self-adjoint element that satisfies {{nowrap|<math>\mathrm{e}^{\mathrm{i} a} = \mathrm{e}^{\mathrm{i} f(u)} = u</math>.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)