Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Control engineering
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Recent advancement == Originally, control engineering was all about continuous systems. Development of computer control tools posed a requirement of discrete control system engineering because the communications between the computer-based digital controller and the physical system are governed by a [[computer clock]].{{r|Keviczky_2019|p=23}} The equivalent to [[Laplace transform]] in the discrete domain is the [[Z-transform]]. Today, many of the control systems are computer controlled and they consist of both digital and analog components. Therefore, at the design stage either: * Digital components are mapped into the continuous domain and the design is carried out in the continuous domain, or * Analog components are mapped into discrete domain and design is carried out there. The first of these two methods is more commonly encountered in practice because many industrial systems have many continuous systems components, including mechanical, fluid, biological and analog electrical components, with a few digital controllers. Similarly, the design technique has progressed from paper-and-ruler based manual design to [[computer-aided design]] and now to [[computer-automated design]] or CAD which has been made possible by [[evolutionary computation]]. CAD can be applied not just to tuning a predefined control scheme, but also to controller structure optimisation, system identification and invention of novel control systems, based purely upon a performance requirement, independent of any specific control scheme.<ref>{{cite journal|doi=10.1016/S0952-1976(01)00023-9|title=Performance-based control system design automation via evolutionary computing |year=2001 |last1=Tan |first1=K.C. |last2=Li |first2=Y. |journal=Engineering Applications of Artificial Intelligence |volume=14 |issue=4 |pages=473β486 |url=http://eprints.gla.ac.uk/3807/1/Dr3_Y_Li_paper1.pdf |archive-url=https://web.archive.org/web/20150503181152/http://eprints.gla.ac.uk/3807/1/Dr3_Y_Li_paper1.pdf |archive-date=2015-05-03 |url-status=live }}</ref><ref>{{cite journal|doi=10.1007/s11633-004-0076-8|title=CAutoCSD-evolutionary search and optimisation enabled computer automated control system design |year=2004 |last1=Li |first1=Yun |last2=Ang |first2=Kiam Heong |last3=Chong |first3=Gregory C. Y. |last4=Feng |first4=Wenyuan |last5=Tan |first5=Kay Chen |last6=Kashiwagi |first6=Hiroshi |journal=International Journal of Automation and Computing |volume=1 |pages=76β88 |s2cid=55417415 |url=http://eprints.gla.ac.uk/3818/1/IJAC_04_CAutoCSD.pdf |archive-url=https://web.archive.org/web/20120127151632/http://eprints.gla.ac.uk/3818/1/IJAC_04_CAutoCSD.pdf |archive-date=2012-01-27 |url-status=live }}</ref> [[Resilient control systems]] extend the traditional focus of addressing only planned disturbances to frameworks and attempt to address multiple types of unexpected disturbance; in particular, adapting and transforming behaviors of the control system in response to malicious actors, abnormal failure modes, undesirable human action, etc.<ref>{{cite book|doi=10.1109/HSI.2009.5091051|chapter=Resilient control systems: Next generation design research |title=2009 2nd Conference on Human System Interactions |year=2009 |last1=Rieger |first1=Craig G. |last2=Gertman |first2=David I. |last3=McQueen |first3=Miles. A. |pages=632β636 |isbn=978-1-4244-3959-1 |s2cid=6603922 |url=https://digital.library.unt.edu/ark:/67531/metadc935383/ }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)