Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coordinate vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Infinite-dimensional vector spaces== Suppose ''V'' is an infinite-dimensional vector space over a field ''F''. If the dimension is ''ΞΊ'', then there is some basis of ''ΞΊ'' elements for ''V''. After an order is chosen, the basis can be considered an ordered basis. The elements of ''V'' are finite linear combinations of elements in the basis, which give rise to unique coordinate representations exactly as described before. The only change is that the indexing set for the coordinates is not finite. Since a given vector ''v'' is a ''finite'' linear combination of basis elements, the only nonzero entries of the coordinate vector for ''v'' will be the nonzero coefficients of the linear combination representing ''v''. Thus the coordinate vector for ''v'' is zero except in finitely many entries. The linear transformations between (possibly) infinite-dimensional vector spaces can be modeled, analogously to the finite-dimensional case, with [[Infinite matrix#Infinite matrices|infinite matrices]]. The special case of the transformations from ''V'' into ''V'' is described in the [[full linear ring]] article.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)