Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Corynebacterium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Industrial uses== Nonpathogenic species of ''Corynebacterium'' are used for important industrial applications, such as the production of [[amino acid]]s<ref>{{cite book |editor1-last=Yamada |editor1-first=K. |editor2-last=Kinoshita |editor2-first=S. |editor3-last=Tsunoda |editor3-first=T. |editor4-last=Aida |editor4-first=K. |year=1972 |title=The Microbial Production of Amino Acids |publisher=Wiley |location=New York }}</ref> and [[nucleotide]]s, bioconversion of [[steroid]]s,<ref>{{cite journal |doi=10.1002/bit.260220110 |pmid=7350926 |title=Steroid transformation at high substrate concentrations using immobilized ''Corynebacterium'' simplex cells |journal=Biotechnology and Bioengineering |volume=22 |issue=1 |pages=119β36 |year=1980 |last1=Constantinides |first1=Alkis |s2cid=29703826 }}</ref> degradation of [[hydrocarbon]]s,<ref>{{cite journal |pmid=422512 |pmc=218359 |year=1979 |last1=Cooper |first1=D. G. |title=Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene |journal=Journal of Bacteriology |volume=137 |issue=2 |pages=795β801 |last2=Zajic |first2=J. E. |last3=Gracey |first3=D. E. |doi=10.1128/JB.137.2.795-801.1979 }}</ref> [[cheese]] aging,<ref>{{cite journal |doi=10.1111/j.1574-6968.1985.tb01591.x |title=Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria |journal=FEMS Microbiology Letters |volume=26 |issue=2 |pages=201β5 |year=1985 |last1=Lee |first1=Chang-Won |last2=Lucas |first2=Serge |last3=Desmazeaud |first3=Michel J. |doi-access=free }}</ref> and production of [[enzyme]]s.<ref>{{cite journal |doi=10.1002/(SICI)1097-0134(20000401)39:1<68::AID-PROT7>3.0.CO;2-Y |pmid=10737928 |title=Molecular modeling of substrate binding in wild-type and mutant ''Corynebacteria'' 2,5-diketo-D-gluconate reductases |journal=Proteins: Structure, Function, and Genetics |volume=39 |issue=1 |pages=68β75 |year=2000 |last1=Khurana |first1=Sumit |last2=Sanli |first2=Gulsah |last3=Powers |first3=David B. |last4=Anderson |first4=Stephen |last5=Blaber |first5=Michael |display-authors=3|citeseerx=10.1.1.661.3412 |s2cid=24526523 }}</ref> Some species produce metabolites similar to [[antibiotic]]s: [[bacteriocin]]s of the corynecin-linocin type,<ref name=jk /><ref>{{cite journal |doi=10.1111/j.1574-6968.1984.tb01451.x |title=Plasmid-associated bacteriocin production in a JK-type coryneform bacterium |journal=FEMS Microbiology Letters |volume=25 |issue=2β3 |pages=179β82 |year=1984 |last1=Kerry-Williams |first1=S.M. |last2=Noble |first2=W.C. |doi-access=free }}</ref><ref>{{cite journal |doi=10.1271/bbb1961.36.2223 |title=Production of Antibacterial Compounds Analogous to Chloramphenicol by a n-Paraffin-grown Bacterium |journal=Agricultural and Biological Chemistry |volume=36 |issue=12 |pages=2223β8 |year=1972 |last1=Suzuki |first1=Takeo |last2=Honda |first2=Haruo |last3=Katsumata |first3=Ryoichi |doi-access=free }}</ref> antitumor agents,<ref>{{cite book |doi=10.1016/S0065-230X(08)60090-1 |pmid=343523 |chapter=Antitumor Activity of Corynebacterium Parvum |volume=26 |pages=257β306 |year=1978 |last1=Milas |first1=Luka |last2=Scott |first2=Martin T. |isbn=978-0-12-809878-3 |editor1-first=Marvella E. |editor1-last=Ford |editor2-first=Dennis K. |editor2-last=Watson |series=Advances in Cancer Research | title = Cancer Disparities | edition = 1st}}</ref> etc. One of the most studied species is [[Corynebacterium glutamicum|''C. glutamicum'']], whose name refers to its capacity to produce [[glutamic acid]] in aerobic conditions.<ref>{{cite journal |doi=10.2323/jgam.13.279 |title=Taxonomical Studies on Glutamic Acid-Producing Bacteria |journal=The Journal of General and Applied Microbiology |volume=13 |issue=3 |pages=279β301 |year=1967 |last1=Abe |first1=Shigeo |last2=Takayama |first2=KEN-Ichiro |last3=Kinoshita |first3=Shukuo |doi-access=free }}</ref> L-Lysine production is specific to ''C. glutamicum'' in which core metabolic enzymes are manipulated through genetic engineering to drive metabolic flux towards the production of NADPH from the pentose phosphate pathway, and L-4-aspartyl phosphate, the commitment step to the synthesis of L-lysine, [[lysC]], {{chem name|dapA}}, {{chem name|dapC}}, and {{chem name|dapF}}. These enzymes are up-regulated in industry through genetic engineering to ensure adequate amounts of lysine precursors are produced to increase metabolic flux. Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs, so scientists have developed mutant strains of'' C. glutamicum'' through PCR engineering and chemical knockouts to ensure production of side-reaction enzymes are limited. Many genetic manipulations conducted in industry are by traditional cross-over methods or inhibition of transcriptional activators.<ref>{{cite book |last1=Kjeldsen |first1=Kjeld RaunkjΓ¦r |year=2009 |title=Optimization of an industrial L-lysine producing Corynebacterium glutamicum strain |type=PhD Thesis |publisher=Technical University of Denmark |oclc=826400572 }}{{page needed|date=January 2017}}</ref> Expression of functionally active human [[epidermal growth factor]] has been brought about in ''C. glutamicum'',<ref>{{cite journal |doi=10.1111/j.1472-765X.2005.01802.x |pmid=16411922 |title=Secretion of human epidermal growth factor by Corynebacterium glutamicum |journal=Letters in Applied Microbiology |volume=42 |issue=1 |pages=66β70 |year=2006 |last1=Date |first1=M. |last2=Itaya |first2=H. |last3=Matsui |first3=H. |last4=Kikuchi |first4=Y. |s2cid=20867427 |doi-access=free }}</ref> thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general [[secretory pathway]] or the [[twin-arginine translocation pathway]].<ref>{{cite journal |doi=10.1007/s00253-007-0934-8 |pmid=17453196 |title=Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria |journal=Applied Microbiology and Biotechnology |volume=76 |issue=3 |pages=633β42 |year=2007 |last1=Meissner |first1=Daniel |last2=Vollstedt |first2=Angela |last3=Van Dijl |first3=Jan Maarten |last4=Freudl |first4=Roland |s2cid=6238466 }}</ref> Unlike gram-negative bacteria, the gram-positive ''Corynebacterium'' species lack [[lipopolysaccharide]]s that function as antigenic [[endotoxins]] in humans.{{citation needed|date=January 2017}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)