Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cross section (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cross section and Mie theory === Cross sections commonly calculated using [[Mie scattering|Mie theory]] include efficiency coefficients for extinction <math display="inline">Q_\text{ext}</math>, scattering <math display="inline">Q_\text{sc}</math>, and Absorption <math display="inline">Q_\text{abs}</math> cross sections. These are normalized by the geometrical cross sections of the particle <math display="inline">\sigma_\text{geom} = \pi a^2</math> as <math display="block"> Q_\alpha = \frac{\sigma_\alpha}{\sigma_\text{geom}}, \qquad \alpha = \text{ext}, \text{sc}, \text{abs}. </math> The cross section is defined by : <math> \sigma_\alpha = \frac{W_\alpha}{I_{\text{inc}}} </math> where <math>\left[W_\alpha \right] = \left[ \text{W} \right]</math> is the energy flow through the surrounding surface, and <math> \left[I_{\text{inc}}\right] = \left[ \frac{\text{W}}{\text{m}^2} \right]</math> is the intensity of the incident wave. For a [[plane wave]] the intensity is going to be <math>I_{\text{inc}} = |\mathbf{E}|^2 / (2 \eta)</math>, where <math>\eta = \sqrt{\mu \mu_0 / (\varepsilon \varepsilon_0)}</math> is the [[Impedance of free space|impedance of the host medium]]. The main approach is based on the following. Firstly, we construct an imaginary sphere of radius <math>r</math> (surface <math>A</math>) around the particle (the scatterer). The net rate of electromagnetic energy crosses the surface <math>A</math> is : <math> W_\text{a} = - \oint_A \mathbf{\Pi} \cdot \hat{\mathbf{r}} dA </math> where <math display="inline">\mathbf{\Pi} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}^* \times \mathbf{H} \right]</math> is the time averaged Poynting vector. If <math>W_\text{a} > 0</math> energy is absorbed within the sphere, otherwise energy is being created within the sphere. We will not consider this case here. If the host medium is non-absorbing, the energy must be absorbed by the particle. We decompose the total field into incident and scattered parts <math>\mathbf{E} = \mathbf{E}_\text{i} + \mathbf{E}_\text{s}</math>, and the same for the magnetic field <math>\mathbf{H}</math>. Thus, we can decompose <math>W_a</math> into the three terms <math> W_\text{a} = W_\text{i} - W_\text{s} + W_{\text{ext}} </math>, where : <math> W_\text{i} = - \oint_A \mathbf{\Pi}_\text{i} \cdot \hat{\mathbf{r}} dA \equiv 0, \qquad W_\text{s} = \oint_A \mathbf{\Pi}_\text{s} \cdot \hat{\mathbf{r}} dA, \qquad W_{\text{ext}} = \oint_A \mathbf{\Pi}_{\text{ext}} \cdot \hat{\mathbf{r}} dA. </math> where <math>\mathbf{\Pi}_\text{i} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_\text{i}^* \times \mathbf{H}_\text{i} \right] </math>, <math>\mathbf{\Pi}_\text{s} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_\text{s}^* \times \mathbf{H}_\text{s} \right] </math>, and <math>\mathbf{\Pi}_{\text{ext}} = \frac{1}{2} \operatorname{Re} \left[ \mathbf{E}_s^* \times \mathbf{H}_i + \mathbf{E}_i^* \times \mathbf{H}_s \right] </math>. All the field can be decomposed into the series of [[Vector spherical harmonics|vector spherical harmonics (VSH)]]. After that, all the integrals can be taken. In the case of a '''uniform sphere''' of radius <math>a</math>, permittivity <math>\varepsilon</math>, and permeability <math>\mu</math>, the problem has a precise solution.<ref>Bohren, Craig F., and Donald R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 2008.</ref> The scattering and extinction coefficients are <math display="block"> Q_\text{sc} = \frac{2}{k^2a^2}\sum_{n=1}^\infty (2n+1)(|a_{n}|^2+|b_{n}|^2) </math> <math display="block"> Q_\text{ext} = \frac{2}{k^2a^2}\sum_{n=1}^\infty (2n+1)\Re(a_{n}+b_{n}) </math> Where <math display="inline">k = n_\text{host} k_0</math>. These are connected as <math display="block"> \sigma_\text{ext} = \sigma_\text{sc} + \sigma_\text{abs} \qquad \text{or} \qquad Q_\text{ext} = Q_\text{sc} + Q_\text{abs} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)