Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Current transformer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Construction== Bar-type current transformers have terminals for source and load connections of the primary circuit, and the body of the current transformer provides insulation between the primary circuit and ground. By use of oil insulation and porcelain bushings, such transformers can be applied at the highest transmission voltages.<ref name=SHEE11/> [[Image:Zero-phase-sequence Current Transformer.jpg|thumb|Zero-phase-sequence current transformer]] Ring-type current transformers are installed over a bus bar or an insulated cable and have only a low level of insulation on the secondary coil. To obtain non-standard ratios or for other special purposes, more than one turn of the primary cable may be passed through the ring. Where a metal shield is present in the cable jacket, it must be terminated so no net sheath current passes through the ring, to ensure accuracy. Current transformers used to sense ground fault (zero sequence) currents, such as in a three-phase installation, may have three primary conductors passed through the ring. Only the net unbalanced current produces a secondary current - this can be used to detect a fault from an energized conductor to ground. Ring-type transformers usually use dry insulation systems, with a hard rubber or plastic case over the secondary windings. For temporary connections, a split ring-type current transformer can be slipped over a cable without disconnecting it. This type has a laminated iron core, with a hinged section that allows it to be installed over the cable; the core links the magnetic flux produced by the single turn primary winding to a wound secondary with many turns. Because the gaps in the hinged segment introduce inaccuracy, such devices are not normally used for revenue metering. [[File:TA36P.jpg|thumb|Split-Core Current transformer]] Current transformers, especially those intended for high voltage substation service, may have multiple taps on their secondary windings, providing several ratios in the same device. This can be done to allow for reduced inventory of spare units, or to allow for load growth in an installation. A high-voltage current transformer may have several secondary windings with the same primary, to allow for separate metering and protection circuits, or for connection to different types of protective devices. For example, one secondary may be used for branch overcurrent protection, while a second winding may be used in a bus differential protective scheme, and a third winding used for power and current measurement.<ref name=SHEE11/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)