Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Curve of constant width
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{reflist|refs= <ref name=barbier>{{cite journal | last = Barbier | first = E. | journal = Journal de mathématiques pures et appliquées | series = 2<sup>e</sup> série | language = French | pages = 273–286 | title = Note sur le problème de l'aiguille et le jeu du joint couvert | url = http://portail.mathdoc.fr/JMPA/PDF/JMPA_1860_2_5_A18_0.pdf | volume = 5 | year = 1860}} See in particular pp. 283–285.</ref> <ref name=bb>{{cite arXiv | last1 = Bardet | first1 = Magali | last2 = Bayen | first2 = Térence | eprint = 1312.4358 | title = On the degree of the polynomial defining a planar algebraic curves of constant width | year = 2013| class = math.AG }}</ref> <ref name=bs>{{cite book | last1 = Bryant | first1 = John | last2 = Sangwin | first2 = Chris | contribution = Chapter 10: How Round Is Your Circle? | isbn = 978-0-691-13118-4 | pages = 188–226 | publisher = Princeton University Press | title = How Round Is Your Circle? Where Engineering and Mathematics Meet | title-link = How Round Is Your Circle | year = 2008}}</ref> <ref name=burke>{{cite journal | last = Burke | first = John F. | date = March 1966 | doi = 10.2307/2688715 | issue = 2 | journal = [[Mathematics Magazine]] | jstor = 2688715 | pages = 84–85 | title = A curve of constant diameter | volume = 39}}</ref> <ref name=chakerian>{{cite journal | last = Chakerian | first = G. D. | journal = [[Pacific Journal of Mathematics]] | mr = 205152 | pages = 13–21 | title = Sets of constant width | url = https://projecteuclid.org/euclid.pjm/1102993951 | volume = 19 | year = 1966| doi = 10.2140/pjm.1966.19.13 | doi-access = free }}</ref> <ref name=chamberland>{{cite book | last = Chamberland | first = Marc | isbn = 9781400865697 | pages = 104–105 | publisher = Princeton University Press | title = Single Digits: In Praise of Small Numbers | url = https://books.google.com/books?id=n9iqBwAAQBAJ&pg=PA104 | year = 2015}}</ref> <ref name=cieslak>{{cite journal | last = Cieślak | first = Waldemar | issue = 5 | journal = Bulletin de la Société des Sciences et des Lettres de Łódź | mr = 995691 | page = 7 | title = On space curves of constant width | volume = 38 | year = 1988}}</ref> <ref name=cr>{{cite book | last1 = Cundy | first1 = H. Martyn | author1-link = Martyn Cundy | last2 = Rollett | first2 = A. P. | edition = 2nd | page = 212 | publisher = Oxford University Press | title = Mathematical Models | title-link = Mathematical Models (Cundy and Rollett) | year = 1961}}</ref> <ref name=ctb>{{cite journal | last1 = Craizer | first1 = Marcos | last2 = Teixeira | first2 = Ralph | last3 = Balestro | first3 = Vitor | doi = 10.1007/s00605-017-1030-5 | issue = 1 | journal = [[Monatshefte für Mathematik]] | mr = 3745700 | pages = 43–60 | title = Closed cycloids in a normed plane | volume = 185 | year = 2018| arxiv = 1608.01651 | s2cid = 119710622 }}</ref> <ref name=eggleston>{{cite journal | last = Eggleston | first = H. G. | doi = 10.1007/BF02759749 | journal = [[Israel Journal of Mathematics]] | mr = 200695 | pages = 163–172 | title = Sets of constant width in finite dimensional Banach spaces | volume = 3 | year = 1965| issue = 3 | s2cid = 121731141 }}</ref> <ref name=euler>{{cite journal | last = Euler | first = Leonhard | author-link = Leonhard Euler | issue = II | journal = Acta Academiae Scientiarum Imperialis Petropolitanae | language = la | pages = 3–30 | title = De curvis triangularibus | url = https://scholarlycommons.pacific.edu/euler-works/513/ | volume = 1778 | year = 1781}}</ref> <ref name=fujiwara>{{cite journal | last = Fujiwara | first = M. | authorlink = Matsusaburo Fujiwara | journal = [[Tohoku Mathematical Journal]] | pages = 180–184 | series = 1st series | title = On space curves of constant breadth | url = https://www.jstage.jst.go.jp/article/tmj1911/5/0/5_0_180/_article/-char/en/ | volume = 5 | year = 1914}}</ref> <ref name=gardner>{{cite book | last = Gardner | first = Martin | author-link = Martin Gardner | contribution = Chapter 18: Curves of Constant Width | isbn = 0-226-28256-2 | pages = 212–221 | publisher = University of Chicago Press | title = The Unexpected Hanging and Other Mathematical Diversions | year = 1991}}</ref> <ref name=goldberg>{{cite journal | last = Goldberg | first = Michael | date = March 1954 | doi = 10.2307/2307215 | issue = 3 | journal = [[American Mathematical Monthly]] | jstor = 2307215 | pages = 166–171 | title = Rotors within rotors | volume = 61}}</ref> <ref name=gruber>{{cite book | last = Gruber | first = Peter M. | isbn = 978-3-7643-1384-5 | page = [https://archive.org/details/convexityitsappl0000unse/page/67 67] | publisher = Birkhäuser | title = Convexity and its Applications | url = https://archive.org/details/convexityitsappl0000unse/page/67 | year = 1983}}</ref> <ref name=jessen>{{cite journal | last = Jessen | first = Börge | authorlink = Børge Jessen | doi = 10.1007/BF03326404 | issue = 1 | journal = [[Mathematische Zeitschrift]] | mr = 3108700 | pages = 378–380 | title = Über konvexe Punktmengen konstanter Breite | volume = 29 | year = 1929| s2cid = 122800988 }}</ref> <ref name=kearsley>{{cite journal | last = Kearsley | first = M. J. | date = September 1952 | doi = 10.2307/3608253 | issue = 317 | journal = [[The Mathematical Gazette]] | jstor = 3608253 | pages = 176–179 | title = Curves of constant diameter | volume = 36| s2cid = 125468725 }}</ref> <ref name=kelly>{{cite journal | last = Kelly | first = Paul J. | author-link = Paul Kelly (mathematician) | doi = 10.2307/2309594 | journal = [[American Mathematical Monthly]] | jstor = 2309594 | mr = 92168 | pages = 333–336 | title = Curves with a kind of constant width | volume = 64 | year = 1957| issue = 5 }}</ref> <ref name=lay>{{cite book | last = Lay | first = Steven R. | at = Theorem 11.11, pp. 81–82 | isbn = 9780486458038 | publisher = Dover | title = Convex Sets and Their Applications | url = https://books.google.com/books?id=U9eOPjmaH90C&pg=PA81 | year = 2007}}.</ref> <ref name=leichtweiss>{{cite journal | last = Leichtweiss | first = K. | doi = 10.1007/BF02942046 | journal = Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | mr = 2187589 | pages = 257–284 | title = Curves of constant width in the non-Euclidean geometry | volume = 75 | year = 2005| s2cid = 119927817 }}</ref> <ref name=lowry>{{cite journal | last = Lowry | first = H. V. | date = February 1950 | department = Mathematical notes | doi = 10.2307/3610879 | issue = 307 | journal = [[The Mathematical Gazette]] | jstor = 3610879 | page = 43 | title = 2109. Curves of constant diameter | volume = 34| s2cid = 187767688 }}</ref> <ref name=martinez>{{cite journal | last = Martinez-Maure | first = Yves | doi = 10.2307/2975192 | issue = 4 | journal = [[American Mathematical Monthly]] | jstor = 2975192 | mr = 1383672 | pages = 338–340 | title = A note on the tennis ball theorem | volume = 103 | year = 1996}}</ref> <ref name=mathcurve>{{cite web | last1 = Ferréol | first1 = Robert | last2 = Boureau | first2 = Samuel | last3 = Esculier | first3 = Alain | title = Self-parallel curve, curve of constant width | url = https://mathcurve.com/courbes2d.gb/largeur%20constante/largeur%20constante.shtml | work = Encyclopédie des formes mathématiques remarquables | year = 2017}}</ref> <ref name=mmo>{{cite book | last1 = Martini | first1 = Horst | last2 = Montejano | first2 = Luis | last3 = Oliveros | first3 = Déborah | author3-link = Déborah Oliveros | doi = 10.1007/978-3-030-03868-7 | isbn = 978-3-030-03866-3 | mr = 3930585 | publisher = Birkhäuser | title = Bodies of Constant Width: An Introduction to Convex Geometry with Applications | year = 2019| s2cid = 127264210 }} For properties of planar curves of constant width, see in particular pp. 69–71. For the Meissner bodies, see section 8.3, pp. 171–178. For bodies of constant brightness, see section 13.3.2, pp. 310–313.</ref> <ref name=moore>{{cite book | last = Moore | first = Helen | authorlink = Helen Moore (mathematician) | editor1-last = Hayes | editor1-first = David F. | editor2-last = Shubin | editor2-first = Tatiana | editor2-link = Tatiana Shubin | contribution = Space shuttle geometry | contribution-url = https://books.google.com/books?id=PD0clAlF8O4C&pg=PA7 | isbn = 0-88385-548-8 | mr = 2085842 | pages = 7–16 | publisher = Mathematical Association of America | location = Washington, DC | series = MAA Spectrum | title = Mathematical Adventures for Students and Amateurs | year = 2004}}</ref> <ref name=rabinowitz>{{cite journal | last = Rabinowitz | first = Stanley | issue = 1 | journal = Missouri Journal of Mathematical Sciences | mr = 1455287 |doi=10.35834/1997/0901023 |doi-access=free | pages = 23–27 | title = A polynomial curve of constant width | url = http://stanleyrabinowitz.com/bibliography/polynomialConstantWidth.pdf | volume = 9 | year = 1997}}</ref> <ref name=robertson>{{cite journal | last = Robertson | first = S. A. | doi = 10.1112/blms/16.3.264 | issue = 3 | journal = [[The Bulletin of the London Mathematical Society]] | mr = 738517 | pages = 264–274 | title = Smooth curves of constant width and transnormality | volume = 16 | year = 1984}}</ref> <ref name=rt>{{cite book | last1 = Rademacher | first1 = Hans | author1-link = Hans Rademacher | last2 = Toeplitz | first2 = Otto | author2-link = Otto Toeplitz | contribution = Chapter 25: Curves of Constant Breadth | pages = 163–177 | publisher = Princeton University Press | title = The Enjoyment of Mathematics: Selections from Mathematics for the Amateur | year = 1957}}</ref> <ref name=teufel>{{cite journal | last = Teufel | first = Eberhard | issue = 2 | journal = Beiträge zur Algebra und Geometrie | mr = 1264285 | pages = 173–176 | title = On the length of space curves of constant width | url = http://eudml.org/doc/228373 | volume = 34 | year = 1993}}</ref> <ref name=wegner72>{{cite journal | last = Wegner | first = Bernd | doi = 10.1002/mana.19720530126 | journal = [[Mathematische Nachrichten]] | language = de | mr = 317187 | pages = 337–344 | title = Globale Sätze über Raumkurven konstanter Breite | volume = 53 | year = 1972| issue = 1–6 }}</ref> <ref name=wegner77>{{cite journal | last = Wegner | first = B. | doi = 10.2969/jmsj/02930537 | issue = 3 | journal = Journal of the Mathematical Society of Japan | mr = 464076 | pages = 537–540 | title = Analytic approximation of continuous ovals of constant width | volume = 29 | year = 1977| doi-access = free }}</ref> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)