Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
D'Alembert's principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalization for thermodynamics== An extension of d'Alembert's principle can be used in thermodynamics.<ref name="Gay2018"/> For instance, for an adiabatically closed [[thermodynamic system]] described by a Lagrangian depending on a single entropy ''S'' and with constant masses <math>m_i</math>, such as <math display="block"> L(\mathbf{r}, \dot{\mathbf{r}},S,t) = \sum_i \frac{1}{2} m_i \dot { \mathbf{r} }_i^2 - V(\mathbf{r},S),</math> it is written as follows <math display="block">\delta \int_{t_1}^{t_2} L(\mathbf{r}, \dot{\mathbf{r}},S,t) dt + \sum_i\int_{t_1}^{t_2} \mathbf{F}_i \cdot \delta \mathbf r_i dt= 0,</math> where the previous constraints <math display="inline">\sum_i\mathbf{C}_i \cdot \delta \mathbf{r} _i=0</math> and <math display="inline">\sum_i\mathbf{C}_i \cdot \dot \mathbf{r} _i=0</math> are generalized to involve the entropy as: * <math>\sum_i\mathbf{C}_i \cdot \delta \mathbf{r} _i+T \delta S=0</math> * <math>\sum_i\mathbf{C}_i \cdot \dot \mathbf{r} _i+T \dot S=0.</math> Here <math>T=\partial V/\partial S</math> is the temperature of the system, <math>\mathbf{F}_i</math> are the external forces, <math>\mathbf{C}_i</math> are the internal dissipative forces. It results in the mechanical and thermal balance equations:<ref name="Gay2018"/> <math display="block">m_i\mathbf{a}_i=- \frac{\partial V}{\partial \mathbf{r}_i}+ \mathbf{C}_i+\mathbf{F}_i, \;\;i=1,...,N \qquad \qquad T \dot S = -\sum_i\mathbf{C}_i \cdot \dot \mathbf{r} _i.</math> Typical applications of the principle include thermo-mechanical systems, membrane transport, and chemical reactions. For <math>\delta S=\dot S=0</math> the classical d'Alembert principle and equations are recovered.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)