Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diagonalizable matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== How to diagonalize a matrix === Diagonalizing a matrix is the same process as finding its [[eigenvalues and eigenvectors]], in the case that the eigenvectors form a basis. For example, consider the matrix :<math>A=\left[\begin{array}{rrr} 0 & 1 & \!\!\!-2\\ 0 & 1 & 0\\ 1 & \!\!\!-1 & 3 \end{array}\right].</math> The roots of the [[characteristic polynomial]] <math>p(\lambda)=\det(\lambda I-A)</math> are the eigenvalues {{nowrap|<math>\lambda_1 = 1,\lambda_2 = 1,\lambda_3 = 2</math>.}} Solving the linear system <math>\left(1I-A\right) \mathbf{v} = \mathbf{0}</math> gives the eigenvectors <math>\mathbf{v}_1 = (1,1,0)</math> and {{nowrap|<math>\mathbf{v}_2 = (0,2,1)</math>,}} while <math>\left(2I-A\right)\mathbf{v} = \mathbf{0}</math> gives {{nowrap|<math>\mathbf{v}_3 = (1,0,-1)</math>;}} that is, <math>A \mathbf{v}_i = \lambda_i \mathbf{v}_i</math> for {{nowrap|<math>i = 1,2,3</math>.}} These vectors form a basis of {{nowrap|<math>V = \mathbb{R}^3</math>,}} so we can assemble them as the column vectors of a [[Change of basis|change-of-basis]] matrix <math>P</math> to get: <math display="block">P^{-1}AP = \left[\begin{array}{rrr} 1 & 0 & 1\\ 1 & 2 & 0\\ 0 & 1 & \!\!\!\!-1 \end{array}\right]^{-1} \left[\begin{array}{rrr} 0 & 1 & \!\!\!-2\\ 0 & 1 & 0\\ 1 & \!\!\!-1 & 3 \end{array}\right] \left[\begin{array}{rrr} 1 & \,0 & 1\\ 1 & 2 & 0\\ 0 & 1 & \!\!\!\!-1 \end{array}\right] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = D .</math> We may see this equation in terms of transformations: <math>P</math> takes the standard basis to the eigenbasis, {{nowrap|<math>P \mathbf{e}_i = \mathbf{v}_i</math>,}} so we have: <math display="block">P^{-1} AP \mathbf{e}_i = P^{-1} A \mathbf{v}_i = P^{-1} (\lambda_i\mathbf{v}_i) = \lambda_i\mathbf{e}_i,</math> so that <math>P^{-1} AP</math> has the standard basis as its eigenvectors, which is the defining property of {{nowrap|<math>D</math>.}} Note that there is no preferred order of the eigenvectors in {{nowrap|<math>P</math>;}} changing the order of the [[eigenvectors]] in <math>P</math> just changes the order of the [[eigenvalues]] in the diagonalized form of {{nowrap|<math>A</math>.}}<ref>{{cite book| last1=Anton |first1=H. |last2= Rorres|first2= C. |title=Elementary Linear Algebra (Applications Version) | url=https://archive.org/details/studentsolutions00grob | url-access=registration |publisher=John Wiley & Sons|edition=8th|date=22 Feb 2000| ISBN= 978-0-471-17052-5}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)