Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dimensionality reduction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalized discriminant analysis (GDA)=== GDA deals with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the [[support-vector machine]]s (SVM) insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space.<ref name="gda">{{cite journal |doi=10.1162/089976600300014980 |pmid=11032039 |title=Generalized Discriminant Analysis Using a Kernel Approach |journal=Neural Computation |volume=12 |issue=10 |pages=2385β2404 |year=2000 |last1=Baudat |first1=G. |last2=Anouar |first2=F. |citeseerx=10.1.1.412.760 |s2cid=7036341}}</ref><ref name="cloudid">{{cite journal |doi=10.1016/j.eswa.2015.06.025 |title=CloudID: Trustworthy cloud-based and cross-enterprise biometric identification |journal=Expert Systems with Applications |volume=42 |issue=21 |pages=7905β7916 |year=2015 |last1=Haghighat |first1=Mohammad |last2=Zonouz |first2=Saman |last3=Abdel-Mottaleb |first3=Mohamed}}</ref> Similar to LDA, the objective of GDA is to find a projection for the features into a lower dimensional space by maximizing the ratio of between-class scatter to within-class scatter.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)