Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet L-function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == * {{Apostol IANT}} *{{dlmf|id=25.15|first=T. M.|last=Apostol}} * {{cite book|first=H.|last=Davenport|author-link=Harold Davenport |title=Multiplicative Number Theory |publisher=Springer |year=2000 |edition=3rd |isbn=0-387-95097-4}} * {{Cite journal | last=Dirichlet | first=P. G. L. | author-link=Peter Gustav Lejeune Dirichlet | title=Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält | journal=Abhand. Ak. Wiss. Berlin | volume=48 | year=1837 }} * {{cite book|first1=Kenneth|last1=Ireland|first2=Michael|last2=Rosen|author-link2=Michael Rosen (mathematician)|title=A Classical Introduction to Modern Number Theory|edition=2nd|publisher=Springer-Verlag|year=1990}} * {{cite book|first1=Hugh L.|last1=Montgomery |author-link=Hugh Montgomery (mathematician)|first2=Robert C.|last2=Vaughan |author-link2=Robert Charles Vaughan (mathematician) | title=Multiplicative number theory. I. Classical theory| series=Cambridge tracts in advanced mathematics| volume=97| publisher=Cambridge University Press|year=2006| isbn=978-0-521-84903-6}} * {{cite book |last1=Iwaniec |first1=Henryk |author-link=Henryk Iwaniec |last2=Kowalski |first2=Emmanuel |year=2004 |title=Analytic Number Theory |series=American Mathematical Society Colloquium Publications |volume=53 |location=Providence, RI |publisher=American Mathematical Society }} * {{springer|title=Dirichlet-L-function|id=p/d032890}} {{L-functions-footer}} [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)