Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet eta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == {{Reflist}} * {{cite journal |last1=Jensen |first1=J. L. W. V. |title=Remarques relatives aux réponses de MM. Franel et Kluyver |journal=L'Intermédiaire des Mathématiciens |volume=II |year=1895 |url=https://gdz.sub.uni-goettingen.de/id/PPN599473517_0002?tify={%22pages%22:[358]} |page=346] }} * {{cite book |last1=Lindelöf |first1=Ernst |title=Le calcul des résidus et ses applications à la théorie des fonctions |url=https://archive.org/details/lecalculdesrsid00lindgoog |publisher=Gauthier-Villars |year=1905 |page=[https://archive.org/details/lecalculdesrsid00lindgoog/page/n115 103] }} * {{cite book |last1=Widder |first1=David Vernon |title=The Laplace Transform |url=https://archive.org/details/in.ernet.dli.2015.201038 |publisher=Princeton University Press |year=1946 |page=[https://archive.org/details/in.ernet.dli.2015.201038/page/n244 230] }} * Landau, Edmund, Handbuch der Lehre von der Verteilung der Primzahlen, Erster Band, Berlin, 1909, p. 160. (Second edition by Chelsea, New York, 1953, p. 160, 933) * Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta Function, Second revised (Heath-Brown) edition. Oxford University Press. * {{cite journal |last1=Conrey |first1=J. B. |title=More than two fifths of the zeros of the Riemann zeta function are on the critical line |journal=Journal für die Reine und Angewandte Mathematik |volume=1989 |year=1989 |issue=399 |pages=1–26 |doi=10.1515/crll.1989.399.1 |s2cid=115910600 }} *{{cite book |last=Knopp |first=Konrad |author-link=Konrad Knopp |title=Theory and Application of Infinite Series |year=1990 |orig-year=1922 |publisher=Dover |isbn=0-486-66165-2}} * Borwein, P., ''[http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf An Efficient Algorithm for the Riemann Zeta Function] {{Webarchive|url=https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf |date=2011-07-26 }}'', Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000), 29–34. * {{cite journal |last1=Sondow |first1=Jonathan |arxiv=math.CO/0211148 |title= Double integrals for Euler's constant and ln 4/π and an analog of Hadjicostas's formula |journal=Amer. Math. Monthly |year=2005 |volume=112 |pages=61–65 }} Amer. Math. Monthly 112 (2005) 61–65, formula 18. * {{cite journal |last1=Sondow |first1=Jonathan |arxiv=math/0209393 |title=Zeros of the Alternating Zeta Function on the Line R(s)=1|journal=Amer. Math. Monthly |year=2003 |volume=110 |pages=435–437 }} Amer. Math. Monthly, 110 (2003) 435–437. * {{cite web |first1=Xavier |last1=Gourdon |first2=Pascal |last2=Sebah |url=http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf |title= Numerical evaluation of the Riemann Zeta-function |year=2003 }} * {{cite arXiv |first1=T. |last1=Amdeberhan |first2=M. L. |last2=Glasser |first3=M. C |last3=Jones |first4=V. H. |last4=Moll |first5=R. |last5=Posey |first6=D. |last6=Varela |eprint=1004.2445 |year=2010 |title=The Cauchy–Schlomilch Transformation|class=math.CA }} p. 12. * {{cite journal |first1=Michael S. |last1=Milgram |arxiv=1208.3429 |year=2012 |title=Integral and Series Representations of Riemann's Zeta Function, Dirichlet's Eta Function and a Medley of Related Results |doi=10.1155/2013/181724 |volume=2013 |journal=Journal of Mathematics |pages=1–17|doi-access=free }}. [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)