Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete-time Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== This table shows some mathematical operations in the time domain and the corresponding effects in the frequency domain. * <math>*\!</math> is the [[Convolution#Discrete convolution|discrete convolution]] of two sequences * <math>s^{*}[n]</math> is the [[complex conjugate]] of <math>s[n].</math> {| class="wikitable" |- ! Property ! Time domain<br/>{{math|''s''[''n'']}} ! Frequency domain<br/><math>S_{2\pi}(\omega)</math> ! Remarks ! Reference |- | Linearity | <math>a\cdot s[n] + b\cdot y[n]</math> | <math>a\cdot S_{2\pi}(\omega) + b\cdot Y_{2\pi}(\omega)</math> | complex numbers <math>a,b</math> | <ref name=Proakis/>{{rp|p.294}} |- | Time reversal / Frequency reversal | <math>s[-n]</math> | <math>S_{2\pi}(-\omega) \!</math> | | <ref name=Proakis/>{{rp|p.297}} |- | Time conjugation | <math>s^*[n]</math> | <math>S_{2\pi}^*(-\omega) \!</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Time reversal & conjugation | <math>s^*[-n]</math> | <math>S_{2\pi}^*(\omega) \!</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Real part in time | <math>\operatorname{Re}{(s[n])}</math> | <math>\frac{1}{2}(S_{2\pi}(\omega) + S_{2\pi}^*(-\omega))</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Imaginary part in time | <math>\operatorname{Im}{(s[n])}</math> | <math>\frac{1}{2i}(S_{2\pi}(\omega) - S_{2\pi}^*(-\omega))</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Real part in frequency | <math>\frac{1}{2}(s[n]+s^*[-n])</math> | <math>\operatorname{Re}{(S_{2\pi}(\omega))}</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Imaginary part in frequency | <math>\frac{1}{2i}(s[n]-s^*[-n])</math> | <math>\operatorname{Im}{(S_{2\pi}(\omega))}</math> | | <ref name=Proakis/>{{rp|p.291}} |- | Shift in time / Modulation in frequency | <math>s[n-k]</math> | <math>S_{2\pi}(\omega)\cdot e^{-i\omega k}</math> | integer {{mvar|k}} | <ref name=Proakis/>{{rp|p.296}} |- | Shift in frequency / Modulation in time | <math>s[n]\cdot e^{ian} \!</math> | <math>S_{2\pi}(\omega-a) \!</math> | real number <math>a</math> | <ref name=Proakis/>{{rp|p.300}} |- | Decimation | <math>s[nM]</math> | <math>\frac{1}{M}\sum_{m=0}^{M-1} S_{2\pi}\left(\tfrac{\omega - 2\pi m}{M}\right) \!</math> {{efn-ua |This expression is derived as follows:<ref name=Oppenheim/>{{rp|p.168}} :<math> \begin{align} \sum_{n=-\infty}^{\infty} s(nMT)\ e^{-i\omega n} &= \frac{1}{MT}\sum_{k=-\infty}^{\infty} S\left(\tfrac{\omega}{2\pi MT} - \tfrac{k}{MT}\right)\\ &= \frac{1}{MT}\sum_{m=0}^{M-1} \quad \sum_{n=-\infty}^{\infty} S\left(\tfrac{\omega}{2\pi MT} - \tfrac{m}{MT} - \tfrac{n}{T}\right), \quad \text{where} \quad k \rightarrow m + nM\\ &=\frac{1}{M}\sum_{m=0}^{M-1} \quad \frac{1}{T}\sum_{n=-\infty}^{\infty}S\left(\tfrac{(\omega - 2\pi m)/M}{2\pi T} - \tfrac{n}{T}\right)\\ &= \frac{1}{M}\sum_{m=0}^{M-1} \quad S_{2\pi}\left(\tfrac{\omega - 2\pi m}{M}\right) \end{align} </math> }} | integer <math>M</math> | |- | Time Expansion | <math> \scriptstyle \begin{cases} s[n/M] & n=\text{multiple of M} \\ 0 & \text{otherwise} \end{cases}</math> | <math>S_{2\pi}(M \omega) \!</math> | integer <math>M</math> |<ref name=Oppenheim/>{{rp|p.172}} |- | Derivative in frequency | <math>\frac{n}{i} s[n] \!</math> | <math>\frac{d S_{2\pi}(\omega)}{d \omega} \!</math> | | <ref name=Proakis/>{{rp|p.303}} |- | Integration in frequency | <math> \!</math> | <math> \!</math> | | |- | Differencing in time | <math> s[n]-s[n-1] \!</math> | <math> \left( 1-e^{-i \omega} \right) S_{2\pi}(\omega) \!</math> | | |- | Summation in time | <math> \sum_{m=-\infty}^{n} s[m] \!</math> | <math> \frac{1}{\left( 1-e^{-i \omega} \right)} S_{2\pi}(\omega) + \pi S(0) \sum_{k=-\infty}^{\infty} \delta(\omega-2\pi k) \!</math> | | |- | Convolution in time / Multiplication in frequency | <math>s[n] * y[n] \!</math> | <math>S_{2\pi}(\omega) \cdot Y_{2\pi}(\omega) \!</math> | | <ref name=Proakis/>{{rp|p.297}} |- | Multiplication in time / Convolution in frequency | <math>s[n] \cdot y[n] \!</math> | <math>\frac{1}{2\pi}\int_{-\pi}^{\pi}S_{2\pi}(\nu) \cdot Y_{2\pi}(\omega-\nu) d\nu \!</math> | [[Periodic convolution]] | <ref name=Proakis/>{{rp|p.302}} |- | [[Cross correlation]] | <math>\rho_{sy} [n] = s^{*}[-n] * y[n] \!</math> | <math>R_{sy} (\omega) = S_{2\pi}^*(\omega) \cdot Y_{2\pi}(\omega) \!</math> | | |- | [[Parseval's theorem]] | <math>E_{sy} = \sum_{n=-\infty}^{\infty} {s[n] \cdot y^*[n]} \!</math> | <math>E_{sy} = \frac{1}{2\pi}\int_{-\pi}^{\pi}{S_{2\pi}(\omega) \cdot Y_{2\pi}^*(\omega) d\omega} \!</math> | | <ref name=Proakis/>{{rp|p.302}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)