Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divide-and-conquer algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Roundoff control === In computations with rounded arithmetic, e.g. with [[floating-point]] numbers, a divide-and-conquer algorithm may yield more accurate results than a superficially equivalent iterative method. For example, one can add ''N'' numbers either by a simple loop that adds each datum to a single variable, or by a D&C algorithm called [[pairwise summation]] that breaks the data set into two halves, recursively computes the sum of each half, and then adds the two sums. While the second method performs the same number of additions as the first and pays the overhead of the recursive calls, it is usually more accurate.<ref>Nicholas J. Higham, "[https://pdfs.semanticscholar.org/5c17/9d447a27c40a54b2bf8b1b2d6819e63c1a69.pdf The accuracy of floating-point summation]", ''SIAM J. Scientific Computing'' '''14''' (4), 783β799 (1993).</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)