Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Domestication
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Plants == {{further|History of agriculture|List of domesticated plants}} Humans [[Foraging|foraged]] for wild cereals, seeds, and nuts thousands of years before they were domesticated; wild wheat and barley, for example, were gathered in the [[Levant]] at least 23,000 years ago.<ref>Weiss, E., Kislev, M.E., Simchoni, O. & Nadel, D. Small-grained wild grasses as staple food at the 23000-year-old site of Ohalo II ''Economic Botany'' 58:s125-s134.</ref><ref name="Purugganan Fuller 2009" /> [[Neolithic]] societies in West Asia first began to cultivate and then domesticate some of these plants around 13,000 to 11,000 years ago.<ref name="Purugganan Fuller 2009" /> The [[founder crops]] of the West Asian Neolithic included cereals ([[emmer]], [[einkorn wheat]], [[barley]]), [[Pulse (legume)|pulses]] ([[lentil]], [[pea]], [[chickpea]], [[Vicia ervilia|bitter vetch]]), and [[flax]].{{sfn|Zohary|Hopf|Weiss|2012|p=139}}{{sfn|Banning|2002}} Other plants were independently domesticated in 13 [[centers of origin]] (subdivided into 24 areas) of the Americas, Africa, and Asia (the Middle East, South Asia, the Far East, and New Guinea and Wallacea); in some thirteen of these regions people began to cultivate grasses and grains.{{sfn|Zohary|Hopf|Weiss|2012|p=}}<ref>{{cite book |last=Harris |first=David R. |title=The Origin and Spread of Agriculture and Pastoralism in Eurasia |location=London |publisher=University College London Press |date=1996 |pages=142–158 |isbn=9781857285376}}</ref> Rice was first cultivated in East Asia.<ref name="Normile">{{cite journal |last=Normile |first=Dennis |date=1997 |title=Yangtze seen as earliest rice site |journal=Science |volume=275 |issue=5298 |pages=309–310 |doi=10.1126/science.275.5298.309 |s2cid=140691699}}</ref><ref>"New Archaeobotanic Data for the Study of the Origins of Agriculture in China", Zhijun Zhao, Current Anthropology Vol. 52, No. S4, (October 2011), pp. S295-S306</ref> [[Sorghum]] was widely cultivated in sub-Saharan Africa,<ref>{{Cite book |last=Carney |first=Judith |title=In the Shadow of Slavery |publisher=University of California Press |date=2009 |isbn=9780520269965 |location=Berkeley and Los Angeles, California |pages=16}}</ref> while peanuts,<ref name="Dillehay Rossen Andres Williams 2007">{{cite journal |last1=Dillehay |first1=Tom D. |last2=Rossen |first2=Jack |last3=Andres |first3=Thomas C. |last4=Williams |first4=David E. |title=Preceramic Adoption of Peanut, Squash, and Cotton in Northern Peru |journal=Science |publisher=American Association for the Advancement of Science (AAAS) |volume=316 |issue=5833 |date=29 June 2007 |doi=10.1126/science.1141395 |pages=1890–1893|pmid=17600214 |bibcode=2007Sci...316.1890D |s2cid=43033764 }}</ref> squash,<ref name="Dillehay Rossen Andres Williams 2007" /><ref name="smith2006">{{cite journal |last=Smith |first=Bruce D. |date=15 August 2006 |title=Eastern North America as an Independent Center of Plant Domestication |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=103 |issue=33 |pages=12223–12228 |bibcode=2006PNAS..10312223S |doi=10.1073/pnas.0604335103 |pmc=1567861 |pmid=16894156 |doi-access=free}}</ref> cotton,<ref name="Dillehay Rossen Andres Williams 2007" /> [[maize]],<ref>{{cite journal |last1=Piperno |first1=Dolores R. |title=The Origins of Plant Cultivation and Domestication in the New World Tropics: Patterns, Process, and New Developments |journal=Current Anthropology |date=October 2011 |volume=52 |issue=S4 |pages=S453–S470 |doi=10.1086/659998 |s2cid=83061925 |quote=the Central Balsas River Valley of Mexico, maize's postulated cradle of origin ... dispersed into lower Central America by 7600 BP}}</ref> [[potato]]es,<ref name="Spooner 2005 14694–99">{{cite journal |last1=Spooner |first1=David M. |last2=McLean |first2=Karen |last3=Ramsay |first3=Gavin |last4=Waugh |first4=Robbie |last5=Bryan |first5=Glenn J. |date=29 September 2005 |title=A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping |journal=[[Proceedings of the National Academy of Sciences]] |pmid=16203994 |volume=102 |issue=41 |pmc=1253605 |pages=14694–14699 |doi=10.1073/pnas.0507400102 |bibcode=2005PNAS..10214694S |doi-access=free }}</ref> and [[cassava]]<ref name="Olsen Schaal 1999">{{cite journal |last1=Olsen |first1=Kenneth M. |last2=Schaal |first2=Barbara A. |title=Evidence on the origin of cassava: Phylogeography of Manihot esculenta |journal=Proceedings of the National Academy of Sciences |volume=96 |issue=10 |date=1999-05-11 |doi=10.1073/pnas.96.10.5586 |pages=5586–5591 |pmid=10318928 |pmc=21904 |bibcode=1999PNAS...96.5586O |doi-access=free}}</ref> were domesticated in the Americas.<ref name="Dillehay Rossen Andres Williams 2007"/> Continued domestication was gradual and geographically diffuse – happening in many small steps and spread over a wide area – on the evidence of both archaeology and genetics.<ref name="Gross Olsen 2010">{{cite journal |last1=Gross |first1=Briana L. |last2=Olsen |first2=Kenneth M. |title=Genetic perspectives on crop domestication |journal=Trends in Plant Science |volume=15 |issue=9 |date=2010 |doi=10.1016/j.tplants.2010.05.008 |pages=529–537 |pmid=20541451 |pmc=2939243 |bibcode=2010TPS....15..529G }}</ref> It was a process of intermittent trial and error and often resulted in diverging traits and characteristics.<ref name="Hughes Oliveira 2019">{{cite journal |last1=Hughes |first1=Aoife |last2=Oliveira |first2=H. R. |last3=Fradgley |first3=N. |last4=Corke |first4=F. |last5=Cockram |first5=J. |last6=Doonan |first6=J. H. |last7=Nibau |first7=C. |date=March 14, 2019 |title=μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives |journal=The Plant Journal |volume=99 |issue=1 |pages=98–111 |doi=10.1111/tpj.14312 |pmc=6618119 |pmid=30868647}}</ref> Whereas domestication of animals impacted most on the genes that controlled behavior, that of plants impacted most on the genes that controlled morphology (seed size, plant architecture, dispersal mechanisms) and physiology (timing of germination or ripening),<ref name="zeder2012"/><ref name="zeder2006"/> as in the [[Wheat#Domestication|domestication of wheat]]. Wild wheat [[Shattering (agriculture)|shatters]] and falls to the ground to reseed itself when ripe, but domesticated wheat stays on the stem for easier harvesting. This change was possible because of a random mutation in the wild populations at the beginning of wheat's [[plant cultivation|cultivation]]. Wheat with this mutation was harvested more frequently and became the seed for the next crop. Therefore, without realizing it, early farmers [[artificial selection|selected for]] this mutation. The result is domesticated wheat, which relies on farmers for its reproduction and dissemination.<ref name="Purugganan Fuller 2009">{{cite journal |last1=Purugganan |first1=Michael D. |last2=Fuller |first2=Dorian Q. |title=The nature of selection during plant domestication |journal=[[Nature (journal)|Nature]] |volume=457 |issue=7231 |date=February 1, 2009 |doi=10.1038/nature07895 |url=https://www.researchgate.net/profile/Dorian-Fuller/publication/24003450_Purugganan_MD_Fuller_DQ_The_nature_of_selection_during_plant_domestication_Nature_457_843-848/links/0912f508156a26ca22000000/Purugganan-MD-Fuller-DQ-The-nature-of-selection-during-plant-domestication-Nature-457-843-848.pdf<!--NOT redundant to DOI--> |pages=843–848 |pmid=19212403 |bibcode=2009Natur.457..843P |s2cid=205216444 }}</ref> <gallery mode=packed heights=150px> File:Maler der Grabkammer des Menna 012.jpg|Farmers with wheat and cattle – [[Ancient Egypt]]ian art 3,400 years ago File:Harold f Weston - Iran11.jpg|Wild [[wheat]] ears shatter when ripe, but domesticated wheat has to be [[threshing|threshed]] and [[Winnowing|winnowed]] (as shown) to release and separate the grain. Photograph by [[Harold Weston]], Iran, 1920s </gallery> === Differences from wild plants === {{main|Domestication syndrome#In plants}} [[File:Usdaeinkorn1 Triticum monococcum.jpg|thumb|upright=0.8|[[Einkorn wheat]] shatters into individual [[spikelet]]s, making [[harvest]]ing difficult. Domesticated cereals do not [[Shattering (agriculture)|shatter]].<ref>Snir, Ainit and Weiss, Ehud 2014 A novel morphometric method for differentiating wild and domesticated barley through intra-rachis measurements, ''Journal of Archaeological Science'' 44: 69–75, https://doi.org/10.1016/j.jas.2014.01.014</ref><ref name="Lenser-Theissen-2013" />]] Domesticated plants differ from their wild relatives in many ways, including * lack of [[Shattering (agriculture)|shattering]] such as of cereal ears (ripe heads),<ref name="Purugganan Fuller 2009"/> loss of fruit [[abscission]]<ref name="Lenser-Theissen-2013"/> * less efficient [[breeding system]] (e.g. without normal [[pollinating]] organs, making human intervention a requirement), larger seeds<!--e.g. wheat--> with lower success in the wild,<ref name="Purugganan Fuller 2009"/> or even sterility (e.g. [[Fruit#Seedless fruits|seedless fruits]]) and therefore only vegetative reproduction<ref name="Agusti citrus 2020">{{cite book |last1=Agusti |first1=Manuel |last2=Primo-Millo |first2=Eduardo |date=2020 |title=The Genus Citrus |url=https://www.sciencedirect.com/science/article/pii/B9780128121634000115 |publisher=Woodhead Publishing |pages=219–244 |isbn=978-0-12-812163-4}}</ref><ref name="Perrier banana 2009">{{cite journal |last1=Perrier |first1=Xavier |last2=Bakry |first2=Frédéric |last3=Carreel |first3=Françoise |last4=Jenny |first4=Christophe |last5=Horry |first5=Jean-Pierre |last6=Lebot |first6=Vincent |last7=Hippolyte |first7=Isabelle |display-authors=3 |title=Combining Biological Approaches to Shed Light on the Evolution of Edible Bananas |journal=Ethnobotany Research & Applications|date=2009 |volume=7 |pages=199–216 |url=http://journals.sfu.ca/era/index.php/era/article/download/362/231 |doi=10.17348/era.7.0.199-216 |hdl=10125/12515 |access-date=October 27, 2019 |archive-date=November 16, 2019 |archive-url=https://web.archive.org/web/20191116055142/http://journals.sfu.ca/era/index.php/era/article/download/362/231 |url-status=live |doi-access=free|hdl-access=free }}</ref> * better [[palatability]] (e.g. higher sugar content, reduced bitterness), better smell, and lower toxicity<ref name="Milla Osborne Turcotte Violle 2015" /><ref name="Wu Guo Mu 2019">{{Cite journal |last1=Wu |first1=Yuye |last2=Guo |first2=Tingting |last3=Mu |first3=Qi |last4=Wang |first4=Jinyu |last5=Li |first5=Xin |last6=Wu |first6=Yun |last7=Tian |first7=Bin |last8=Wang |first8=Ming Li |last9=Bai |first9=Guihua |last10=Perumal |first10=Ramasamy |last11=Trick |first11=Harold N. |display-authors=3 |date=December 2019 |title=Allelochemicals targeted to balance competing selections in African agroecosystems |url=http://www.nature.com/articles/s41477-019-0563-0 |journal=Nature Plants |volume=5 |issue=12 |pages=1229–1236 |doi=10.1038/s41477-019-0563-0 |pmid=31792396 |bibcode=2019NatPl...5.1229W |s2cid=208539527|url-access=subscription }}</ref> * edible part larger, e.g. cereal grains<ref name="Kantar-et-al-2016">{{cite journal |last1=Kantar |first1=Michael B. |last2=Tyl |first2=Catrin E. |last3=Dorn |first3=Kevin M. |last4=Zhang |first4=Xiaofei |last5=Jungers |first5=Jacob M. |last6=Kaser |first6=Joe M. |last7=Schendel |first7=Rachel R. |last8=Eckberg |first8=James O. |last9=Runck |first9=Bryan C. |last10=Bunzel |first10=Mirko |last11=Jordan |first11=Nick R. |last12=Stupar |first12=Robert M. |last13=Marks |first13=M. David |last14=Anderson |first14=James A. |last15=Johnson |first15=Gregg A. |last16=Sheaffer |first16=Craig C. |last17=Schoenfuss |first17=Tonya C. |last18=Ismail |first18=Baraem |last19=Heimpel |first19=George E. |last20=Wyse |first20=Donald L. |display-authors=3 |title=Perennial Grain and Oilseed Crops |journal=[[Annual Review of Plant Biology]] |publisher=[[Annual Reviews (publisher)|Annual Reviews]] |volume=67 |issue=1 |date=2016-04-29 |doi=10.1146/annurev-arplant-043015-112311 |pages=703–729 |pmid=26789233|doi-access=free |bibcode=2016AnRPB..67..703K }}</ref> or fruits<ref name="Lenser-Theissen-2013">{{cite journal |last1=Lenser |first1=Teresa |last2=Theißen |first2=Günter |title=Molecular mechanisms involved in convergent crop domestication |journal=[[Trends in Plant Science]] |publisher=[[Cell Press]] |volume=18 |issue=12 |date=2013 |doi=10.1016/j.tplants.2013.08.007 |pages=704–714 |pmid=24035234|bibcode=2013TPS....18..704L }}</ref> * edible part more easily separated from non-edible part<ref name="Kantar-et-al-2016" /> * increased number of fruits or grains<ref name="Lenser-Theissen-2013" /> * altered color, taste, and texture<ref name="Lenser-Theissen-2013" /> * [[daylength]] independence<ref name="Lenser-Theissen-2013" /> * [[determinate growth]]<ref name="Lenser-Theissen-2013" /> * reduced or no [[vernalization]]<ref name="Lenser-Theissen-2013" /> * less [[seed dormancy]].<ref name="Lenser-Theissen-2013" /> [[Plant defense against herbivory|Plant defenses against herbivory]], such as [[thorns, spines, and prickles]], poison, protective coverings, and sturdiness may have been reduced in domesticated plants. This would make them more likely to be eaten by herbivores unless protected by humans, but there is only weak support for most of this.<ref name="Milla Osborne Turcotte Violle 2015" /> Farmers did select for reduced bitterness and lower toxicity and for food quality, which likely increased crop palatability to herbivores as to humans.<ref name="Milla Osborne Turcotte Violle 2015">{{cite journal |last1=Milla |first1=Rubén |last2=Osborne |first2=Colin P. |last3=Turcotte |first3=Martin M. |last4=Violle |first4=Cyrille |title=Plant domestication through an ecological lens |journal=Trends in Ecology & Evolution |publisher=Elsevier BV |volume=30 |issue=8 |date=2015 |doi=10.1016/j.tree.2015.06.006 |pages=463–469|pmid=26138385 |bibcode=2015TEcoE..30..463M }}</ref> However, a survey of 29 plant domestications found that crops were as well-defended against two major insect pests ([[beet armyworm]] and [[green peach aphid]]) both chemically (e.g. with bitter substances) and morphologically (e.g. with toughness) as their wild ancestors.<ref name="Turcotte Turley Johnson 2014">{{cite journal |last1=Turcotte |first1=Martin M. |last2=Turley |first2=Nash E. |last3=Johnson |first3=Marc T. J. |title=The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events |journal=New Phytologist |publisher=Wiley |volume=204 |issue=3 |date=18 July 2014 |doi=10.1111/nph.12935 |pages=671–681|pmid=25039644 |doi-access=free |bibcode=2014NewPh.204..671T }}</ref> === Changes to plant genome === [[File:Polyploid wheat origins.svg|thumb|upright=2|Domesticated [[wheat]] evolved by repeated [[Hybrid (biology)|hybridization]] and [[polyploidy]] from multiple wild ancestors, increasing the size and evolvability of the genome.<ref name="Golovnina Glushkov Blinov Mayorov 2007"/> ]] During domestication, crop species undergo intense artificial selection that alters their genomes, establishing core traits that define them as domesticated, such as increased grain size.<ref name="Purugganan Fuller 2009"/><ref name="Gepts 2004">{{cite journal |last=Gepts |first=Paul |title=Crop Domestication as a long-term selection experiment |journal=Plant Breeding Reviews |date=2004 |volume=24 |series=2 |url=http://www.plantsciences.ucdavis.edu/gepts/LTS.pdf}}</ref> Comparison of the [[coding DNA]] of [[chromosome]] 8 in rice between fragrant and non-fragrant varieties showed that aromatic and fragrant rice, including [[basmati]] and [[Jasmine rice|jasmine]], is derived from an ancestral rice domesticate that suffered a deletion in [[exon]] 7 which altered the coding for betaine aldehyde dehydrogenase (BADH2).<ref>{{cite journal |last1=Shao |first1=G. |first2=A. |last2=Tang |first3=S. Q. |last3=Tang |first4=J. |last4=Luo |first5=G. A. |last5=Jiao |first6=J. L. |last6=Wu |first7=P. S. |last7=Hu |title=A new deletion mutation of the fragrant gene and the development of three molecular markers for fragrance in rice |journal=Plant Breeding |date=April 2011 |volume=130 |issue=2 |series=2 |doi=10.1111/j.1439-0523.2009.01764.x |pages=172–176|bibcode=2011PBree.130..172S }}</ref> Comparison of the potato genome with that of other plants located genes for resistance to potato blight caused by ''[[Phytophthora infestans]]''.<ref>{{cite journal |last=The Potato Genome Sequencing Consortium|title=Genome sequence and analysis of the tuber crop potato |journal=Nature |date=July 2011 |volume=475 |doi=10.1038/nature10158 |issue=7355 |pmid=21743474 |pages=189–195 |doi-access=free}}</ref> In [[coconut]], genomic analysis of 10 [[Microsatellite (genetics)|microsatellite loci]] (of [[noncoding DNA]]) found two episodes of domestication based on differences between individuals in the [[Indian Ocean]] and those in the [[Pacific Ocean]].<ref name="coco">{{cite journal |last1=Gunn |first1=Bee |first2=Luc |last2=Baudouin |first3=Kenneth M. |last3=Olsen |title=Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics |journal=PLOS ONE |date=2011 |volume=6 |issue=6 |doi=10.1371/journal.pone.0021143 |pmid=21731660 |pmc=3120816 |page=e21143 |bibcode=2011PLoSO...621143G |doi-access=free}}</ref><ref name="zeder">{{cite journal |last1=Zeder |first1=Melinda |first2=Eve |last2=Emshwiller |first3=Bruce D. |last3=Smith |first4=Daniel G. |last4=Bradley |title=Documenting domestication: the intersection of genetics and archaeology |journal=Trends in Genetics |date=March 2006 |volume=22 |issue=3 |doi=10.1016/j.tig.2006.01.007 |url=http://www.cell.com/trends/genetics/abstract/S0168-9525(06)00026-6 |accessdate=28 November 2011 |pmid=16458995 |pages=139–55|url-access=subscription }}</ref> The coconut experienced a [[founder effect]], where a small number of individuals with low diversity founded the modern population, permanently losing much of the genetic variation of the wild population.<ref name="coco" /> [[Population bottleneck]]s which reduced variation throughout the genome at some later date after domestication are evident in crops such as [[pearl millet]], [[cotton]], [[common bean]] and [[lima bean]].<ref name="zeder" /> In wheat, domestication involved repeated [[Hybrid (biology)|hybridization]] and [[polyploidy]]. These steps are large and essentially instantaneous changes to the genome and the [[epigenome]], enabling a rapid evolutionary response to artificial selection. Polyploidy increases the number of chromosomes, bringing new combinations of genes and alleles, which in turn [[evolvability|enable further changes]] such as by [[chromosomal crossover]].<ref name="Golovnina Glushkov Blinov Mayorov 2007">{{cite journal |last1=Golovnina |first1=K. A. |last2=Glushkov |first2=S. A. |last3=Blinov |first3=A. G. |last4=Mayorov |first4=V. I. |last5=Adkison |first5=L. R. |last6=Goncharov |first6=N. P. |title=Molecular phylogeny of the genus Triticum L |journal=Plant Systematics and Evolution |publisher=Springer |volume=264 |issue=3–4 |date=2007-02-12 |doi=10.1007/s00606-006-0478-x |pages=195–216 <!--|url=http://ressources.semencespaysannes.org/docs/triticum.pdf-->|bibcode=2007PSyEv.264..195G |s2cid=39102602 }}</ref> === Impact on plant microbiome === The [[microbiome]], the collection of [[microorganism]]s inhabiting the surface and internal tissue of plants, is affected by domestication. This includes changes in microbial species composition<ref>{{Cite journal |last1=Mutch |first1=Lesley A. |last2=Young |first2=J. Peter W. |date=2004 |title=Diversity and specificity of ''Rhizobium leguminosarum'' biovar ''viciae'' on wild and cultivated legumes |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-294X.2004.02259.x |journal=Molecular Ecology |volume=13 |issue=8 |pages=2435–2444 |doi=10.1111/j.1365-294X.2004.02259.x |pmid=15245415 |bibcode=2004MolEc..13.2435M |s2cid=1123490}}</ref><ref>{{Cite journal |last1=Kiers |first1=E. Toby |last2=Hutton |first2=Mark G. |last3=Denison |first3=R. Ford |date=December 22, 2007 |title=Human selection and the relaxation of legume defences against ineffective rhizobia |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |issue=1629 |pages=3119–3126 |doi=10.1098/rspb.2007.1187 |pmc=2293947 |pmid=17939985}}</ref><ref name=":4">{{Cite journal |last1=Abdelfattah |first1=Ahmed |last2=Tack |first2=Ayco J. M. |last3=Wasserman |first3=Birgit |last4=Liu |first4=Jia |last5=Berg |first5=Gabriele |last6=Norelli |first6=John |last7=Droby |first7=Samir |last8=Wisniewski |first8=Michael |display-authors=5 |title=Evidence for host–microbiome co-evolution in apple |journal=New Phytologist |date=2021 |volume=234 |issue=6 |pages=2088–2100 |doi=10.1111/nph.17820 |pmid=34823272 |pmc=9299473 |s2cid=244661193}}</ref> and diversity.<ref>{{Cite journal |last1=Coleman-Derr |first1=Devin |last2=Desgarennes |first2=Damaris |last3=Fonseca-Garcia |first3=Citlali |last4=Gross |first4=Stephen |last5=Clingenpeel |first5=Scott |last6=Woyke |first6=Tanja |last7=North |first7=Gretchen |last8=Visel |first8=Axel |last9=Partida-Martinez |first9=Laila P. |last10=Tringe |first10=Susannah G. |display-authors=5 |date=2016 |title=Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species |journal=New Phytologist |volume=209 |issue=2 |pages=798–811 |doi=10.1111/nph.13697 |pmc=5057366 |pmid=26467257|bibcode=2016NewPh.209..798C }}</ref><ref name=":4" /> Plant lineage, including [[speciation]], domestication, and [[Plant breeding|breeding]], have shaped plant [[endophyte]]s ([[phylosymbiosis]]) in similar patterns as plant genes.<ref name=":4" /><ref>{{Cite journal |last1=Bouffaud |first1=Marie-Lara |last2=Poirier |first2=Marie-Andrée |last3=Muller |first3=Daniel |last4=Moënne-Loccoz |first4=Yvan |display-authors=3 |date=2014 |title=Root microbiome relates to plant host evolution in maize and other Poaceae |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/1462-2920.12442 |journal=Environmental Microbiology |volume=16 |issue=9 |pages=2804–2814 |doi=10.1111/1462-2920.12442 |pmid=24588973 |bibcode=2014EnvMi..16.2804B|url-access=subscription }}</ref><ref>{{Cite journal |last1=Abdullaeva |first1=Yulduzkhon |last2=Ambika Manirajan |first2=Binoy |last3=Honermeier |first3=Bernd |last4=Schnell |first4=Sylvia |last5=Cardinale |first5=Massimiliano |display-authors=3 |date=July 1, 2021 |title=Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota |journal=Journal of Advanced Research |volume=31 |pages=75–86 |pmid=34194833 |doi=10.1016/j.jare.2020.12.008 |pmc=8240117}}</ref><ref>{{Cite journal |last1=Favela |first1=Alonso |last2=O. Bohn |first2=Martin |last3=D. Kent |first3=Angela |date=August 2021 |title=Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome |journal=[[The ISME Journal]] |volume=15 |issue=8 |pages=2454–2464 |doi=10.1038/s41396-021-00923-z |pmid=33692487 |pmc=8319409|bibcode=2021ISMEJ..15.2454F }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)