Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ehrhart polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Ehrhart series== We can define a [[generating function]] for the Ehrhart polynomial of an integral {{math|''d''}}-dimensional polytope {{math|''P''}} as : <math> \operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t. </math> This series can be expressed as a [[rational function]]. Specifically, Ehrhart proved (1962) that there exist complex numbers <math>h_j^*</math>, <math>0 \le j \le d</math>, such that the Ehrhart series of {{math|''P''}} is<ref name=ehrhart/> :<math>\operatorname{Ehr}_P(z) = \frac{\sum_{j=0}^d h_j^\ast(P) z^j}{(1 - z)^{d + 1}}, \qquad \sum_{j=0}^d h_j^\ast(P) \neq 0.</math> [[Richard P. Stanley]]'s non-negativity theorem states that under the given hypotheses, <math>h_j^*</math> will be non-negative integers, for <math>0 \le j \le d</math>. Another result by Stanley shows that if {{math|''P''}} is a lattice polytope contained in {{math|''Q''}}, then <math>h_j^*(P) \le h_j^*(Q)</math> for all {{math|''j''}}.<ref>{{citation|last1=Stanley|first1=Richard|title=A monotonicity property of <math>h</math>-vectors and <math>h^*</math>-vectors|journal=[[European Journal of Combinatorics]]|year=1993|volume=14|issue=3 |pages=251β258 |doi=10.1006/eujc.1993.1028|doi-access=free}}</ref> The <math>h^*</math>-vector is in general not unimodal, but it is whenever it is symmetric and the polytope has a regular unimodular triangulation.<ref>{{citation|last1=Athanasiadis|first1=Christos A.|title=''h''*-Vectors, Eulerian Polynomials and Stable Polytopes of Graphs| journal= [[Electronic Journal of Combinatorics]]| year=2004| volume=11| issue=2|doi=10.37236/1863| url= http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i2r6| doi-access=free}}</ref> ===Ehrhart series for rational polytopes=== As in the case of polytopes with integer vertices, one defines the Ehrhart series for a rational polytope. For a ''d''-dimensional rational polytope {{math|''P''}}, where {{math|''D''}} is the smallest integer such that {{math|''DP''}} is an integer polytope ({{math|''D''}} is called the denominator of {{math|''P''}}), then one has :<math>\operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t = \frac{\sum_{j=0}^{D(d+1)} h_j^\ast(P) z^j}{\left(1 - z^D\right)^{d + 1}},</math> where the <math>h_j^*</math> are still non-negative integers.<ref>{{citation|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=Decompositions of rational convex polytopes|journal=Annals of Discrete Mathematics|date=1980|volume=6|pages=333β342| doi=10.1016/s0167-5060(08)70717-9|isbn=9780444860484}}</ref><ref>{{citation| last1=Beck| first1=Matthias| last2=Sottile| first2= Frank|title=Irrational proofs for three theorems of Stanley|journal=[[European Journal of Combinatorics]]|date=January 2007| volume =28|issue=1|pages=403β409|doi=10.1016/j.ejc.2005.06.003|arxiv=math/0501359| s2cid=7801569}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)