Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Electron mobility
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Typical electron mobility at room temperature (300 K) in metals like [[gold]], [[copper]] and [[silver]] is 30–50 cm<sup>2</sup>/(V⋅s). Carrier mobility in semiconductors is doping dependent. In [[silicon]] (Si) the electron mobility is of the order of 1,000, in germanium around 4,000, and in gallium arsenide up to 10,000 cm<sup>2</sup>/(V⋅s). Hole mobilities are generally lower and range from around 100 cm<sup>2</sup>/(V⋅s) in gallium arsenide, to 450 in silicon, and 2,000 in germanium.<ref name=":0">{{Cite web|title=NSM Archive - Physical Properties of Semiconductors|url=http://www.matprop.ru/|access-date=2020-07-25|website=www.matprop.ru}}</ref> Very high mobility has been found in several ultrapure low-dimensional systems, such as two-dimensional electron gases ([[2DEG]]) (35,000,000 cm<sup>2</sup>/(V⋅s) at low temperature),<ref name=":1">{{cite journal|last1=Umansky|first1=V.| last2=Heiblum| first2=M.| last3=Levinson|first3=Y.|last4=Smet|first4=J.|last5=Nübler|first5=J.|last6=Dolev|first6=M.|title=MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2 V−1 s−1|journal=Journal of Crystal Growth|volume=311 |issue=7| pages=1658–1661| year=2009|bibcode = 2009JCrGr.311.1658U |doi = 10.1016/j.jcrysgro.2008.09.151 }}</ref> [[carbon nanotubes]] (100,000 cm<sup>2</sup>/(V⋅s) at room temperature)<ref>{{cite journal|last1=Dürkop|first1=T.| last2=Getty|first2=S. A.|last3=Cobas|first3=Enrique|last4=Fuhrer|first4=M. S.|s2cid=45010238|title=Extraordinary Mobility in Semiconducting Carbon Nanotubes|journal=Nano Letters|volume=4|issue=1|pages=35|year=2004|doi=10.1021/nl034841q|bibcode = 2004NanoL...4...35D }}</ref> and freestanding [[graphene]] (200,000 cm<sup>2</sup>/(V⋅s) at low temperature).<ref name=":2">{{cite journal|last1=Bolotin| first1=K|last2=Sikes|first2=K|last3=Jiang|first3=Z|last4=Klima|first4=M|last5=Fudenberg|first5=G| last6=Hone|first6=J| last7=Kim|first7=P|last8=Stormer|first8=H|title=Ultrahigh electron mobility in suspended graphene| journal=Solid State Communications| volume=146|issue=9|pages=351–355|year=2008| doi=10.1016/j.ssc.2008.02.024| arxiv=0802.2389 |bibcode = 2008SSCom.146..351B | s2cid=118392999}}</ref> [[Organic semiconductor]]s ([[polymer]], [[oligomer]]) developed thus far have carrier mobilities below 50 cm<sup>2</sup>/(V⋅s), and typically below 1, with well performing materials measured below 10.<ref>{{cite journal |last1=Nawrocki |first1=Robert |title=300-nm Imperceptible, Ultraflexible, and Biocompatible e-Skin Fit with Tactile Sensors and Organic Transistors |journal=Advanced Electronic Materials |date=2016 |volume=2 |issue=4 |pages=1500452 |doi=10.1002/aelm.201500452|doi-access=free |s2cid=138355533 }}</ref> {| class="wikitable sortable" |+List of highest measured mobilities [cm<sup>2</sup>/(V⋅s)] !Material !Electron mobility !Hole mobility |- |AlGaAs/GaAs heterostructures |35,000,000<ref name=":1" /> |5,800,000<ref>{{cite journal | vauthors=((Chung, Y. J.)), ((Wang, C.)), ((Singh, S. K.)), ((Gupta, A.)), ((Baldwin, K. W.)), ((West, K. W.)), ((Shayegan, M.)), ((Pfeiffer, L. N.)), ((Winkler, R.)) | journal=Physical Review Materials | title=Record-quality GaAs two-dimensional hole systems | volume=6 | issue=3 | pages=034005 | date=14 March 2022 | issn=2475-9953 | doi=10.1103/PhysRevMaterials.6.034005| arxiv=2203.10713 | bibcode=2022PhRvM...6c4005C }}</ref> |- |Freestanding graphene |200,000<ref name=":2" /> | |- |Carbon nanotubes |79,000<ref name="DurkopGetty2004">{{cite journal|last1=Dürkop|first1=T.|last2=Getty|first2=S. A.|last3=Cobas|first3=Enrique |last4=Fuhrer|first4=M. S.|s2cid=45010238|title=Extraordinary Mobility in Semiconducting Carbon Nanotubes|journal=Nano Letters |volume=4|issue=1|year=2004|pages=35–39|doi=10.1021/nl034841q|bibcode=2004NanoL...4...35D}}</ref><ref name="SnowCampbell2005">{{cite journal|last1=Snow|first1=E. S.|last2=Campbell|first2=P. M.|last3=Ancona|first3=M. G.|last4=Novak|first4=J. P.|title=High-mobility carbon-nanotube thin-film transistors on a polymeric substrate|journal=Applied Physics Letters| volume=86| issue=3| year=2005|pages=033105|issn=0003-6951|doi=10.1063/1.1854721|bibcode=2005ApPhL..86c3105S|url=http://www.dtic.mil/get-tr-doc/pdf?AD=ADA573996|archive-url=https://web.archive.org/web/20170924194648/http://www.dtic.mil/get-tr-doc/pdf?AD=ADA573996|url-status=dead|archive-date=September 24, 2017|url-access=subscription}}</ref> | |- |Cubic boron arsenide (c-BAs) |1,600<ref>{{cite journal | url=https://www.science.org/doi/10.1126/science.abn4290 | doi=10.1126/science.abn4290 | title=High ambipolar mobility in cubic boron arsenide | year=2022 | last1=Shin | first1=Jungwoo | last2=Gamage | first2=Geethal Amila | last3=Ding | first3=Zhiwei | last4=Chen | first4=Ke | last5=Tian | first5=Fei | last6=Qian | first6=Xin | last7=Zhou | first7=Jiawei | last8=Lee | first8=Hwijong | last9=Zhou | first9=Jianshi | last10=Shi | first10=Li | last11=Nguyen | first11=Thanh | last12=Han | first12=Fei | last13=Li | first13=Mingda | last14=Broido | first14=David | last15=Schmidt | first15=Aaron | last16=Ren | first16=Zhifeng | last17=Chen | first17=Gang | journal=Science | volume=377 | issue=6604 | pages=437–440 | pmid=35862526 | bibcode=2022Sci...377..437S | s2cid=250952849 | url-access=subscription }}</ref> | |- |Crystalline silicon |1,400<ref name=":0" /> |450<ref name=":0" /> |- |Polycrystalline silicon |100 | |- |Metals (Al, Au, Cu, Ag) |10–50 | |- |2D material (MoS<sub>2</sub>) |10–50 | |- |Organics |8.6<ref>{{cite journal|first1=Tao|last1=He|first2=Matthias|last2=Stolte|first3=Frank|last3=Würthner|title=Air-Stable n-Channel Organic Single Crystal Field-Effect Transistors Based on Microribbons of Core-Chlorinated Naphthalene Diimide |journal=Advanced Materials |date=2013-12-23|volume=25|issue=48|pages=6951–6955|doi=10.1002/adma.201303392|pmid=24105872|bibcode=2013AdM....25.6951H |doi-access=free}}</ref> |43<ref>{{cite journal |last1=Yuan |first1=Yongbo |title=Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method |journal=Nature Communications |date=2014 |volume=5 |page=3005 |doi=10.1038/ncomms4005| pmid=24398476 |bibcode=2014NatCo...5.3005Y |doi-access=free }}</ref> |- |Amorphous silicon |~1<ref>{{cite journal |last1=Heremans |first1=Paul |title=Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications |journal=Advanced Materials |date=2015 |volume=28 |issue=22 |pages=4266–4282|doi=10.1002/adma.201504360|pmid=26707947 |s2cid=25457390 }}</ref> | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)