Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic orbit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===From initial position and velocity=== An [[orbit equation]] defines the path of an [[orbiting body]] <math>m_2\,\!</math> around [[central body]] <math>m_1\,\!</math> relative to <math>m_1\,\!</math>, without specifying position as a function of time. If the eccentricity is less than 1 then the equation of motion describes an elliptical orbit. Because [[Kepler's equation]] <math>M = E - e \sin E </math> has no general [[closed-form solution]] for the [[Eccentric anomaly]] (E) [[Kepler's equation#Inverse problem|in terms of the Mean anomaly]] (M), equations of motion as a function of time also have no closed-form solution (although [[Mean anomaly#Formulae|numerical solutions exist]] for both). However, closed-form time-independent path equations of an elliptic orbit with respect to a central body can be determined from just an initial position (<math>\mathbf{r}</math>) and velocity (<math>\mathbf{v}</math>). For this case it is convenient to use the following assumptions which differ somewhat from the standard assumptions above: :# The central body's position is at the origin and is the primary focus (<math>\mathbf{F1}</math>) of the ellipse (alternatively, the center of mass may be used instead if the orbiting body has a significant mass) :# The central body's mass (m1) is known :# The orbiting body's initial position(<math>\mathbf{r}</math>) and velocity(<math>\mathbf{v}</math>) are known :# The ellipse lies within the XY-plane The fourth assumption can be made without loss of generality because any three points (or vectors) must lie within a common plane. Under these assumptions the second focus (sometimes called the "empty" focus) must also lie within the XY-plane: <math>\mathbf{F2} = \left(f_x,f_y\right)</math> . ====Using vectors==== The general equation of an ellipse under these assumptions using vectors is: :<math> |\mathbf{F2} - \mathbf{p}| + |\mathbf{p}| = 2a \qquad\mid z=0</math> where: *<math>a\,\!</math> is the length of the [[semi-major axis]]. *<math>\mathbf{F2} = \left(f_x,f_y\right)</math> is the second ("empty") focus. *<math>\mathbf{p} = \left(x,y\right)</math> is any (x,y) value satisfying the equation. The semi-major axis length (a) can be calculated as: :<math>a = \frac{\mu |\mathbf{r}|}{2\mu - |\mathbf{r}| \mathbf{v}^2}</math> where <math>\mu\ = Gm_1</math> is the [[standard gravitational parameter]]. The empty focus (<math>\mathbf{F2} = \left(f_x,f_y\right)</math>) can be found by first determining the [[Eccentricity vector]]: :<math>\mathbf{e} = \frac{\mathbf{r}}{|\mathbf{r}|} - \frac{\mathbf{v}\times \mathbf{h}}{\mu}</math> Where <math>\mathbf{h}</math> is the specific angular momentum of the orbiting body:<ref>{{cite book |first1=Roger R. |last1=Bate |first2=Donald D. |last2=Mueller |first3=Jerry E. |last3=White |url=https://books.google.com/books?id=UtJK8cetqGkC&pg=PA17 |title=Fundamentals Of Astrodynamics |date=1971 |publisher=Dover |location=New York |isbn=0-486-60061-0 |page=17 |edition=First}}</ref> :<math>\mathbf{h} = \mathbf{r} \times \mathbf{v}</math> Then :<math>\mathbf{F2} = -2a\mathbf{e}</math> ====Using XY Coordinates==== This can be done in cartesian coordinates using the following procedure: The general equation of an ellipse under the assumptions above is: :<math> \sqrt{ \left(f_x - x\right)^2 + \left(f_y - y\right)^2} + \sqrt{ x^2 + y^2 } = 2a \qquad\mid z=0</math> Given: :<math>r_x, r_y \quad</math> the initial position coordinates :<math>v_x, v_y \quad</math> the initial velocity coordinates and :<math>\mu = Gm_1 \quad</math> the gravitational parameter Then: :<math>h = r_x v_y - r_y v_x \quad</math> specific angular momentum :<math>r = \sqrt{r_x^2 + r_y^2} \quad</math> initial distance from F1 (at the origin) :<math>a = \frac{\mu r}{2\mu - r \left(v_x^2 + v_y^2 \right)} \quad</math> the semi-major axis length :<math>e_x = \frac{r_x}{r} - \frac{h v_y}{\mu} \quad</math> the [[Eccentricity vector]] coordinates :<math>e_y = \frac{r_y}{r} + \frac{h v_x}{\mu} \quad</math> Finally, the empty focus coordinates :<math>f_x = - 2 a e_x \quad</math> :<math>f_y = - 2 a e_y \quad</math> Now the result values ''fx, fy'' and ''a'' can be applied to the general ellipse equation above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)