Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Entscheidungsproblem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantifier prefix === Any first-order formula has a prenex normal form. For each possible quantifier prefix to the prenex normal form, we have a fragment of first-order logic. For example, the [[Bernays–Schönfinkel class]], <math>[\exists^*\forall^*]_= </math>, is the class of first-order formulas with quantifier prefix <math>\exists\cdots\exists\forall\cdots \forall </math>, equality symbols, and no [[Function symbol|function symbols]]. For example, Turing's 1936 paper (p. 263) observed that since the halting problem for each Turing machine is equivalent to a first-order logical formula of form <math>\forall \exists \forall \exists^6 </math>, the problem <math>\rm{Sat}(\forall \exists \forall \exists^6) </math> is undecidable. The precise boundaries are known, sharply: * <math>\rm{Sat}(\forall \exists \forall) </math> and <math>\rm{Sat}([\forall \exists \forall]_{=} ) </math>are co-RE-complete, and the <math>\rm{FinSat} </math> problems are RE-complete (Theorem 5.2). * Same for <math>\forall^3 \exists </math> (Theorem 5.3). * <math>\exists^* \forall^2 \exists^* </math> is decidable, proved independently by Gödel, Schütte, and Kalmár. * <math>[\forall^2 \exists]_= </math> is undecidable. * For any <math>n \geq 0 </math>, both <math>\rm{Sat}(\exists^n \forall^*) </math> and <math>\rm{Sat}([\exists^n \forall^*]_=) </math> are NEXPTIME-complete (Theorem 5.1). ** This implies that <math>\rm{Sat}( [\exists^*\forall^*]_= ) </math> is decidable, a result first published by Bernays and Schönfinkel.<ref>{{Cite journal |last1=Bernays |first1=Paul |last2=Schönfinkel |first2=Moses |date=December 1928 |title=Zum Entscheidungsproblem der mathematischen Logik |url=http://link.springer.com/10.1007/BF01459101 |journal=Mathematische Annalen |language=de |volume=99 |issue=1 |pages=342–372 |doi=10.1007/BF01459101 |s2cid=122312654 |issn=0025-5831}}</ref> * For any <math>n \geq 0, m \geq 2 </math>, <math>\rm{Sat}(\exists^n \forall \exists^m ) </math> is EXPTIME-complete (Section 5.4.1). * For any <math>n \geq 0 </math>, <math>\rm{Sat}([\exists^n \forall \exists^*]_=) </math> is NEXPTIME-complete (Section 5.4.2). ** This implies that <math>\rm{Sat}(\exists^*\forall^*\exists^*) </math> is decidable, a result first published by Ackermann.<ref>{{Cite journal |last=Ackermann |first=Wilhelm |date=1928-12-01 |title=Über die Erfüllbarkeit gewisser Zählausdrücke |url=https://doi.org/10.1007/BF01448869 |journal=Mathematische Annalen |language=de |volume=100 |issue=1 |pages=638–649 |doi=10.1007/BF01448869 |s2cid=119646624 |issn=1432-1807}}</ref> * For any <math>n \geq 0 </math>, <math>\rm{Sat}(\exists^n \forall \exists) </math> and <math>\rm{Sat}([\exists^n \forall \exists]_=) </math> are PSPACE-complete (Section 5.4.3). Börger et al. (2001)<ref>{{Cite book |last1=Börger |first1=Egon |title=The classical decision problem |last2=Grädel |first2=Erich |last3=Gurevič |first3=Jurij |last4=Gurevich |first4=Yuri |date=2001 |publisher=Springer |isbn=978-3-540-42324-9 |edition=2. printing of the 1. |series=Universitext |location=Berlin}}</ref> describes the level of computational complexity for every possible fragment with every possible combination of quantifier prefix, functional arity, predicate arity, and equality/no-equality.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)