Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's totient function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fourier transform=== The totient is the [[discrete Fourier transform]] of the [[Greatest common divisor|gcd]], evaluated at 1.<ref>{{harvtxt|Schramm|2008}}</ref> Let :<math> \mathcal{F} \{ \mathbf{x} \}[m] = \sum\limits_{k=1}^n x_k \cdot e^{{-2\pi i}\frac{mk}{n}}</math> where {{math|''x<sub>k</sub>'' {{=}} gcd(''k'',''n'')}} for {{math|''k'' β {1, ..., ''n''}<nowiki/>}}. Then :<math>\varphi (n) = \mathcal{F} \{ \mathbf{x} \}[1] = \sum\limits_{k=1}^n \gcd(k,n) e^{-2\pi i\frac{k}{n}}.</math> The real part of this formula is :<math>\varphi (n)=\sum\limits_{k=1}^n \gcd(k,n) \cos {\tfrac{2\pi k}{n}} .</math> For example, using <math>\cos\tfrac{\pi}5 = \tfrac{\sqrt 5+1}4 </math> and <math>\cos\tfrac{2\pi}5 = \tfrac{\sqrt 5-1}4 </math>:<math display="block">\begin{array}{rcl} \varphi(10) &=& \gcd(1,10)\cos\tfrac{2\pi}{10} + \gcd(2,10)\cos\tfrac{4\pi}{10} + \gcd(3,10)\cos\tfrac{6\pi}{10}+\cdots+\gcd(10,10)\cos\tfrac{20\pi}{10}\\ &=& 1\cdot(\tfrac{\sqrt5+1}4) + 2\cdot(\tfrac{\sqrt5-1}4) + 1\cdot(-\tfrac{\sqrt5-1}4) + 2\cdot(-\tfrac{\sqrt5+1}4) + 5\cdot (-1) \\ && +\ 2\cdot(-\tfrac{\sqrt5+1}4) + 1\cdot(-\tfrac{\sqrt5-1}4) + 2\cdot(\tfrac{\sqrt5-1}4) + 1\cdot(\tfrac{\sqrt5+1}4) + 10 \cdot (1) \\ &=& 4 . \end{array} </math>Unlike the Euler product and the divisor sum formula, this one does not require knowing the factors of {{mvar|n}}. However, it does involve the calculation of the greatest common divisor of {{mvar|n}} and every positive integer less than {{mvar|n}}, which suffices to provide the factorization anyway.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)