Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler–Maclaurin formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Asymptotic expansion of sums=== In the context of computing [[asymptotic expansion]]s of sums and [[Series (mathematics)|series]], usually the most useful form of the Euler–Maclaurin formula is <math display=block>\sum_{n=a}^b f(n) \sim \int_a^b f(x)\,dx + \frac{f(b) + f(a)}{2} + \sum_{k=1}^\infty \,\frac{B_{2k}}{(2k)!} \left(f^{(2k - 1)}(b) - f^{(2k - 1)}(a)\right),</math> where {{mvar|a}} and {{mvar|b}} are integers.<ref>{{Cite book | editor1-last=Abramowitz | editor1-first=Milton | editor1-link=Milton Abramowitz | editor2-last=Stegun | editor2-first=Irene A. | editor2-link=Irene Stegun | title=[[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]] | publisher=[[Dover Publications]] | location=New York | isbn=978-0-486-61272-0 | year=1972 | pages = 16, 806, 886}}</ref> Often the expansion remains valid even after taking the limits {{math|''a'' → −∞}} or {{math|''b'' → +∞}} or both. In many cases the integral on the right-hand side can be evaluated in [[Differential Galois theory|closed form]] in terms of [[elementary function]]s even though the sum on the left-hand side cannot. Then all the terms in the asymptotic series can be expressed in terms of elementary functions. For example, <math display=block>\sum_{k=0}^\infty \frac{1}{(z + k)^2} \sim \underbrace{\int_0^\infty\frac{1}{(z + k)^2}\,dk}_{= \dfrac{1}{z}} + \frac{1}{2z^2} + \sum_{t = 1}^\infty \frac{B_{2t}}{z^{2t + 1}}.</math> Here the left-hand side is equal to {{math|''ψ''<sup>(1)</sup>(''z'')}}, namely the first-order [[Polygamma function#Series representation|polygamma function]] defined by :<math>\psi^{(1)}(z) = \frac{d^2}{dz^2}\log \Gamma(z);</math> the [[gamma function]] {{math|Γ(''z'')}} is equal to {{math|(''z'' − 1)!}} when {{mvar|z}} is a [[positive integer]]. This results in an asymptotic expansion for {{math|''ψ''<sup>(1)</sup>(''z'')}}. That expansion, in turn, serves as the starting point for one of the derivations of precise error estimates for [[Stirling's approximation]] of the [[factorial]] function. ====Examples==== If {{mvar|s}} is an integer greater than 1 we have: <math display=block>\sum_{k=1}^n \frac{1}{k^s} \approx \frac 1{s-1}+\frac 12-\frac 1{(s-1)n^{s-1}}+\frac 1{2n^s}+\sum_{i=1}\frac{B_{2i}}{(2i)!}\left[\frac{(s+2i-2)!}{(s-1)!}-\frac{(s+2i-2)!}{(s-1)!n^{s+2i-1}}\right].</math> Collecting the constants into a value of the [[Riemann zeta function]], we can write an asymptotic expansion: <math display=block>\sum_{k=1}^n \frac{1}{k^s} \sim\zeta(s)-\frac 1{(s-1)n^{s-1}}+\frac 1{2n^s}-\sum_{i=1}\frac{B_{2i}}{(2i)!}\frac{(s+2i-2)!}{(s-1)!n^{s+2i-1}}.</math> For {{mvar|s}} equal to 2 this simplifies to <math display=block>\sum_{k=1}^n \frac{1}{k^2} \sim\zeta(2)-\frac 1n+\frac 1{2n^2}-\sum_{i=1}\frac{B_{2i}}{n^{2i+1}},</math> or <math display=block>\sum_{k=1}^n \frac{1}{k^2} \sim \frac{\pi^2}{6} -\frac{1}{n} +\frac{1}{2n^2} -\frac{1}{6n^3}+\frac{1}{30n^5}-\frac{1}{42n^7} + \cdots.</math> When {{math|''s'' {{=}} 1}}, the corresponding technique gives an asymptotic expansion for the [[harmonic number]]s: <math display=block>\sum_{k=1}^n \frac{1}{k} \sim \gamma + \log n + \frac{1}{2n} - \sum_{k=1}^\infty \frac{B_{2k}}{2kn^{2k}},</math> where {{math|''γ'' ≈ 0.5772...}} is the [[Euler–Mascheroni constant]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)