Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler equations (fluid dynamics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conservation form=== {{See also|conservation equation|}} The incompressible Euler equations in the Froude limit are equivalent to a single conservation equation with conserved quantity and associated flux respectively: <math display="block"> \mathbf y = \begin{pmatrix}\rho \\ \rho \mathbf u \\0\end{pmatrix}; \qquad {\mathbf F} = \begin{pmatrix}\rho \mathbf u \\ \rho \mathbf u \otimes \mathbf u + p \mathbf I\\\mathbf u\end{pmatrix}. </math> Here <math>\mathbf y</math> has length <math>N+2</math> and <math>\mathbf F</math> has size <math>(N+2)N</math>.{{efn|In 3D for example <math>\mathbf y</math> has length 5, <math>\mathbf I</math> has size 3Γ3 and <math>\mathbf F</math> has size 5Γ3, so the explicit forms are: <math display="block"> {\mathbf y}=\begin{pmatrix}\rho \\ \rho u_1 \\ \rho u_2 \\ \rho u_3 \\0\end{pmatrix}; \quad {\mathbf F}=\begin{pmatrix}\rho u_1 & \rho u_2 & \rho u_3 \\ \rho u_1^2 + p & \rho u_1u_2 & \rho u_1u_3 \\ \rho u_1 u_2 & \rho u_2^2 + p & \rho u_2u_3 \\ \rho u_3 u_1 & \rho u_3 u_2 & \rho u_3^2 + p \\ u_1 & u_2 & u_3 \end{pmatrix}. </math> }} In general (not only in the Froude limit) Euler equations are expressible as: <math display="block"> \frac {\partial}{\partial t}\begin{pmatrix}\rho \\ \rho \mathbf u \\0\end{pmatrix}+ \nabla \cdot \begin{pmatrix}\rho \mathbf u\\\rho \mathbf u \otimes \mathbf u + p \mathbf I\\ \mathbf u\end{pmatrix} = \begin{pmatrix}0 \\ \rho \mathbf g \\ 0 \end{pmatrix}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)