Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Eulerian path
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Special cases === An [[Asymptotic analysis|asymptotic formula]] for the number of Eulerian circuits in the [[complete graph]]s was determined by [[Brendan McKay (mathematician)|McKay]] and Robinson (1995):<ref>[[Brendan McKay (mathematician)|Brendan McKay]] and Robert W. Robinson, [http://cs.anu.edu.au/~bdm/papers/euler.pdf Asymptotic enumeration of eulerian circuits in the complete graph], ''[[Combinatorica]]'', 10 (1995), no. 4, 367β377.</ref> :<math> \operatorname{ec}(K_n) = 2^{\frac{(n+1)}{2}}\pi^{\frac{1}{2}} e^{\frac{-n^2}{2}+\frac{11}{12}} n^{\frac{(n-2)(n+1)}{2}} \bigl(1+O(n^{-\frac{1}{2}+\epsilon})\bigr). </math> A similar formula was later obtained by M.I. Isaev (2009) for [[complete bipartite graph]]s:<ref>{{cite journal |author=M.I. Isaev |title=Asymptotic number of Eulerian circuits in complete bipartite graphs |language=ru |journal=Proc. 52-nd MFTI Conference |year=2009 |place=Moscow |pages=111β114 }}</ref> :<math> \operatorname{ec}(K_{n,n}) = \left(\frac{n}{2}-1\right)!^{2n} 2^{n^2-n+\frac{1}{2}}\pi^{-n+\frac{1}{2}} n^{n-1} \bigl(1+O(n^{-\frac{1}{2}+\epsilon})\bigr). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)