Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expectation–maximization algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof of correctness == Expectation-Maximization works to improve <math>Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)})</math> rather than directly improving <math>\log p(\mathbf{X}\mid\boldsymbol\theta)</math>. Here it is shown that improvements to the former imply improvements to the latter.<ref name="Little1987">{{cite book |last1=Little |first1= Roderick J.A. |last2= Rubin |first2= Donald B. |author2-link= Donald Rubin |title= Statistical Analysis with Missing Data |url=https://archive.org/details/statisticalanaly00litt |url-access=limited | series = Wiley Series in Probability and Mathematical Statistics |year= 1987 |publisher= John Wiley & Sons |location= New York |isbn= 978-0-471-80254-9 |pages= [https://archive.org/details/statisticalanaly00litt/page/n145 134]–136}}</ref> For any <math>\mathbf{Z}</math> with non-zero probability <math>p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta)</math>, we can write : <math> \log p(\mathbf{X}\mid\boldsymbol\theta) = \log p(\mathbf{X},\mathbf{Z}\mid\boldsymbol\theta) - \log p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta). </math> We take the expectation over possible values of the unknown data <math>\mathbf{Z}</math> under the current parameter estimate <math>\theta^{(t)}</math> by multiplying both sides by <math>p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta^{(t)})</math> and summing (or integrating) over <math>\mathbf{Z}</math>. The left-hand side is the expectation of a constant, so we get: : <math> \begin{align} \log p(\mathbf{X}\mid\boldsymbol\theta) & = \sum_{\mathbf{Z}} p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta^{(t)}) \log p(\mathbf{X},\mathbf{Z}\mid\boldsymbol\theta) - \sum_{\mathbf{Z}} p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta^{(t)}) \log p(\mathbf{Z}\mid\mathbf{X},\boldsymbol\theta) \\ & = Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) + H(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}), \end{align} </math> where <math>H(\boldsymbol\theta\mid\boldsymbol\theta^{(t)})</math> is defined by the negated sum it is replacing. This last equation holds for every value of <math>\boldsymbol\theta</math> including <math>\boldsymbol\theta = \boldsymbol\theta^{(t)}</math>, : <math> \log p(\mathbf{X}\mid\boldsymbol\theta^{(t)}) = Q(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)}) + H(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)}), </math> and subtracting this last equation from the previous equation gives : <math> \log p(\mathbf{X}\mid\boldsymbol\theta) - \log p(\mathbf{X}\mid\boldsymbol\theta^{(t)}) = Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) - Q(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)}) + H(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) - H(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)}). </math> However, [[Gibbs' inequality]] tells us that <math>H(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) \ge H(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)})</math>, so we can conclude that : <math> \log p(\mathbf{X}\mid\boldsymbol\theta) - \log p(\mathbf{X}\mid\boldsymbol\theta^{(t)}) \ge Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) - Q(\boldsymbol\theta^{(t)}\mid\boldsymbol\theta^{(t)}). </math> In words, choosing <math>\boldsymbol\theta</math> to improve <math>Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)})</math> causes <math>\log p(\mathbf{X}\mid\boldsymbol\theta)</math> to improve at least as much.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)