Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Field norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties of the norm== Several properties of the norm function hold for any finite extension.<ref>{{harvnb|Roman|2006|p=151}}</ref><ref name=":0" /> === Group homomorphism === The norm '''N'''{{sub|''L''/''K''}} : ''L''* β ''K''* is a [[group homomorphism]] from the multiplicative group of ''L'' to the multiplicative group of ''K'', that is :<math>\operatorname{N}_{L/K}(\alpha \beta) = \operatorname{N}_{L/K}(\alpha) \operatorname{N}_{L/K}(\beta) \text{ for all }\alpha, \beta \in L^*.</math> Furthermore, if ''a'' in ''K'': :<math>\operatorname{N}_{L/K}(a \alpha) = a^{[L:K]} \operatorname{N}_{L/K}(\alpha) \text{ for all }\alpha \in L.</math> If ''a'' β ''K'' then <math>\operatorname{N}_{L/K}(a) = a^{[L:K]}.</math> === Composition with field extensions === Additionally, the norm behaves well in [[tower of fields|towers of fields]]: if ''M'' is a finite extension of ''L'', then the norm from ''M'' to ''K'' is just the composition of the norm from ''M'' to ''L'' with the norm from ''L'' to ''K'', i.e. :<math>\operatorname{N}_{M/K}=\operatorname{N}_{L/K}\circ\operatorname{N}_{M/L}.</math> === Reduction of the norm === The norm of an element in an arbitrary field extension can be reduced to an easier computation if the degree of the field extension is already known. This is<blockquote><math>N_{L/K}(\alpha) = N_{K(\alpha)/K}(\alpha)^{[L:K(\alpha)]}</math><ref name=":0">{{Cite book|last=Oggier|url=http://www1.spms.ntu.edu.sg/~frederique/ANT10.pdf|title=Introduction to Algebraic Number Theory|pages=15|access-date=2020-03-28|archive-date=2014-10-23|archive-url=https://web.archive.org/web/20141023023935/http://www1.spms.ntu.edu.sg/~frederique/ANT10.pdf|url-status=dead}}</ref></blockquote>For example, for <math>\alpha = \sqrt{2}</math> in the field extension <math>L = \mathbb{Q}(\sqrt{2},\zeta_3), K =\mathbb{Q}</math>, the norm of <math>\alpha</math> is<blockquote><math>\begin{align} N_{\mathbb{Q}(\sqrt{2},\zeta_3)/\mathbb{Q}}(\sqrt{2}) &= N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(\sqrt{2})^{[\mathbb{Q}(\sqrt{2},\zeta_3):\mathbb{Q}(\sqrt{2})]}\\ &= (-2)^{2}\\ &= 4 \end{align}</math></blockquote>since the degree of the field extension <math>L/K(\alpha)</math> is <math>2</math>. === Detection of units === For <math>\mathcal{O}_K</math> the [[ring of integers]] of an [[algebraic number field]] <math>K</math>, an element <math>\alpha \in \mathcal{O}_K</math> is a unit if and only if <math>N_{K/\mathbb{Q}}(\alpha) = \pm 1</math>. For instance :<math>N_{\mathbb{Q}(\zeta_3)/\mathbb{Q}}(\zeta_3) = 1</math> where :<math>\zeta_3^3 = 1</math>. Thus, any number field <math>K</math> whose ring of integers <math>\mathcal{O}_K</math> contains <math>\zeta_3</math> has it as a unit.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)