Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fluctuation–dissipation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantum version=== The fluctuation-dissipation theorem relates the [[correlation function]] of the observable of interest <math>\langle \hat{x}(t)\hat{x}(0)\rangle</math> (a measure of fluctuation) to the imaginary part of the [[response function]] <math>\text{Im}\left[\chi(\omega)\right]=\left[\chi(\omega)-\chi^*(\omega)\right]/2i</math> in the frequency domain (a measure of dissipation). A link between these quantities can be found through the so-called [[Kubo formula]]<ref>{{cite journal |title=The fluctuation-dissipation theorem |doi=10.1088/0034-4885/29/1/306 | volume=29 |year=1966 |journal=Reports on Progress in Physics |pages=255–284 |author=Kubo R |issue=1 |bibcode=1966RPPh...29..255K|s2cid=250892844 }}</ref> <math display="block">\chi(t-t')=\frac{i}{\hbar}\theta(t-t')\langle [\hat{x}(t),\hat{x}(t')] \rangle</math> which follows, under the assumptions of the [[Linear response function|linear response]] theory, from the time evolution of the [[ensemble average]] of the observable <math>\langle\hat{x}(t)\rangle</math> in the presence of a perturbing source. Once Fourier transformed, the Kubo formula allows writing the imaginary part of the response function as <math display="block">\text{Im}\left[\chi(\omega)\right] = \frac{1}{2\hbar} \int_{-\infty}^{+\infty}\langle \hat{x}(t)\hat{x}(0) - \hat{x}(0)\hat{x}(t)\rangle e^{i\omega t}dt.</math> In the [[canonical ensemble]], the second term can be re-expressed as <math display="block">\langle \hat{x}(0) \hat{x}(t)\rangle = \operatorname{Tr} e^{-\beta \hat{H}}\hat{x}(0)\hat{x}(t) = \operatorname{Tr} \hat{x}(t) e^{-\beta \hat{H}}\hat{x}(0) = \operatorname{Tr} e^{-\beta \hat{H}}\underbrace{e^{\beta \hat{H}}\hat{x}(t) e^{-\beta \hat{H}}}_{\hat{x}(t-i\hbar\beta)}\hat{x}(0)=\langle \hat{x}(t-i\hbar\beta) \hat{x}(0)\rangle</math> where in the second equality we re-positioned <math>\hat{x}(t)</math> using the cyclic property of trace. Next, in the third equality, we inserted <math>e^{-\beta \hat{H}}e^{\beta \hat{H}}</math> next to the trace and interpreted <math>e^{-\beta\hat{H}}</math> as a time evolution operator <math>e^{-\frac{i}{\hbar}\hat{H}\Delta t}</math> with [[imaginary time]] interval <math>\Delta t = -i\hbar\beta</math>. The imaginary time shift turns into a <math>e^{-\beta\hbar\omega}</math> factor after Fourier transform <math display="block">\int_{-\infty}^{+\infty}\langle \hat{x}(t-i\hbar\beta)\hat{x}(0)\rangle e^{i\omega t}dt = e^{-\beta\hbar\omega}\int_{-\infty}^{+\infty} \langle \hat{x}(t)\hat{x}(0)\rangle e^{i\omega t}dt</math> and thus the expression for <math>\text{Im}\left[\chi(\omega)\right]</math> can be easily rewritten as the quantum fluctuation-dissipation relation <ref>{{cite journal |title=Fundamental aspects of quantum Brownian motion |doi=10.1063/1.1853631 | volume=15 |year=2005 |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |page=026105 |author=Hänggi Peter, Ingold Gert-Ludwig|issue=2 |pmid=16035907 |arxiv=quant-ph/0412052 |bibcode=2005Chaos..15b6105H |s2cid=9787833 |url=https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-301764 }}</ref> <math display="block">S_{x}(\omega)=2\hbar\left[n_\text{BE}(\omega)+1\right]\text{Im}\left[\chi(\omega)\right]</math> where the power spectral density <math>S_{x}(\omega)</math> is the Fourier transform of the auto-correlation <math>\langle \hat{x}(t) \hat{x}(0)\rangle</math> and <math>n_\text{BE}(\omega)=\left(e^{\beta\hbar\omega}-1\right)^{-1}</math> is the [[Bose-Einstein Statistic|Bose-Einstein]] distribution function. The same calculation also yields <math display="block">S_{x}(-\omega) = e^{-\beta\hbar\omega}S_{x}(\omega) = 2\hbar\left[n_\text{BE}(\omega)\right] \text{Im}\left[\chi(\omega)\right]\neq S_{x}(+\omega)</math> thus, differently from what obtained in the classical case, the power spectral density is not exactly frequency-symmetric in the quantum limit. Consistently, <math>\langle \hat{x}(t)\hat{x}(0)\rangle</math> has an imaginary part originating from the commutation rules of operators.<ref>{{cite journal |title=Introduction to Quantum Noise, Measurement and Amplification |doi=10.1103/RevModPhys.82.1155 |volume=82 |year=2010 |journal= Reviews of Modern Physics|page=1155 |arxiv=0810.4729 |last1=Clerk |first1=A. A. |last2=Devoret |first2=M. H. |last3=Girvin |first3=S. M. |last4=Marquardt |first4=Florian |last5=Schoelkopf |first5=R. J. |issue=2 |bibcode=2010RvMP...82.1155C |s2cid=119200464 }}</ref> The additional "<math>+1</math>" term in the expression of <math>S_x(\omega)</math> at positive frequencies can also be thought of as linked to [[spontaneous emission]]. An often cited result is also the symmetrized power spectral density <math display="block">\frac{S_x(\omega)+S_x(-\omega)}{2} = 2\hbar\left[n_\text{BE}(\omega)+\frac{1}{2}\right] \text{Im}\left[\chi(\omega)\right] = \hbar\coth\left(\frac{\hbar\omega}{2k_BT}\right)\text{Im}\left[\chi(\omega)\right].</math> The "<math>+1/2</math>" can be thought of as linked to [[quantum fluctuation]]s, or to [[Zero-point energy|zero-point motion]] of the observable <math>\hat{x}</math>. At high enough temperatures, <math>n_\text{BE}\approx (\beta\hbar\omega)^{-1}\gg 1</math>, i.e. the quantum contribution is negligible, and we recover the classical version.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)