Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fock state
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Action on some specific Fock states=== {{unordered list | For a vacuum state—no particle is in any state— expressed as <math> |0_{{\mathbf{k}}_{1}}, 0_{{\mathbf{k}}_{2}}, 0_{{\mathbf{k}}_{3}}...0_{{\mathbf{k}}_{l}}, ...\rangle</math>, we have: : <math>b^{\dagger}_{{\mathbf{k}}_l}|0_{{\mathbf{k}}_{1}}, 0_{{\mathbf{k}}_{2}}, 0_{{\mathbf{k}}_{3}}...0_{{\mathbf{k}}_{l}}, ...\rangle = |0_{{\mathbf{k}}_{1}}, 0_{{\mathbf{k}}_{2}}, 0_{{\mathbf{k}}_{3}}...1_{{\mathbf{k}}_{l}}, ...\rangle </math> and, <math>b_{\mathbf{k}_l}|0_{\mathbf{k}_1}, 0_{\mathbf{k}_2}, 0_{\mathbf{k}_3}...0_{\mathbf{k}_l}, ...\rangle = 0</math>.<ref name="TIFR"/> That is, the ''l''-th creation operator creates a particle in the ''l''-th state '''k'''<sub>l</sub>, and the vacuum state is a fixed point of annihilation operators as there are no particles to annihilate. | We can generate any Fock state by operating on the vacuum state with an appropriate number of '''creation operators''': : <math>|n_{\mathbf{k}_1}, n_{\mathbf{k}_2} ...\rangle = \frac{\left(b^\dagger_{\mathbf{k}_1}\right)^{n_{\mathbf{k}_1}}}{\sqrt{n_{\mathbf{k}_1}!}} \frac{\left(b^\dagger_{\mathbf{k}_2}\right)^{n_{\mathbf{k}_2}}}{\sqrt{n_{\mathbf{k}_2}!}}...|0_{\mathbf{k}_{1}}, 0_{\mathbf{k}_{2}}, ...\rangle </math> | For a single mode Fock state, expressed as, <math>|n_\mathbf{k}\rangle</math>, : <math>b^\dagger_\mathbf{k}|n_\mathbf{k}\rangle = \sqrt{n_\mathbf{k} + 1} |n_\mathbf{k} + 1\rangle</math> and, : <math>b_\mathbf{k}|n_\mathbf{k}\rangle = \sqrt{n_\mathbf{k}} |n_\mathbf{k} - 1\rangle</math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)