Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Frame bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==''G''-structures== {{see also|G-structure}} If a smooth manifold ''<math>M</math>'' comes with additional structure it is often natural to consider a subbundle of the full frame bundle of ''<math>M</math>'' which is adapted to the given structure. For example, if ''<math>M</math>'' is a Riemannian manifold we saw above that it is natural to consider the orthonormal frame bundle of ''<math>M</math>''. The orthonormal frame bundle is just a reduction of the structure group of ''<math>F_{\mathrm{GL}}(M)</math>'' to the orthogonal group ''<math>\mathrm{O}(n)</math>''. In general, if ''<math>M</math>'' is a smooth ''<math>n</math>''-manifold and ''<math>G</math>'' is a [[Lie subgroup]] of ''<math>\mathrm{GL}(n,\mathbb{R})</math>'' we define a '''[[G-structure|''G''-structure]]''' on ''<math>M</math>'' to be a [[reduction of the structure group]] of ''<math>F_{\mathrm{GL}}(M)</math>'' to ''<math>G</math>''. Explicitly, this is a principal ''<math>G</math>''-bundle ''<math>F_{G}(M)</math>'' over ''<math>M</math>'' together with a ''<math>G</math>''-equivariant [[bundle map]] :<math>{\mathrm F}_{G}(M) \to {\mathrm F}_{\mathrm{GL}}(M)</math> over ''<math>M</math>''. In this language, a Riemannian metric on ''<math>M</math>'' gives rise to an ''<math>\mathrm{O}(n)</math>''-structure on ''<math>M</math>''. The following are some other examples. *Every [[orientability|oriented manifold]] has an oriented frame bundle which is just a ''<math>\mathrm{GL}^+(n,\mathbb{R})</math>''-structure on ''<math>M</math>''. *A [[volume form]] on ''<math>M</math>'' determines a ''<math>\mathrm{SL}(n,\mathbb{R})</math>''-structure on ''<math>M</math>''. *A ''<math>2n</math>''-dimensional [[symplectic manifold]] has a natural ''<math>\mathrm{Sp}(2n,\mathbb{R})</math>''-structure. *A ''<math>2n</math>''-dimensional [[complex manifold|complex]] or [[almost complex manifold]] has a natural ''<math>\mathrm{GL}(n,\mathbb{C})</math>''-structure. In many of these instances, a ''<math>G</math>''-structure on ''<math>M</math>'' uniquely determines the corresponding structure on ''<math>M</math>''. For example, a ''<math>\mathrm{SL}(n,\mathbb{R})</math>''-structure on ''<math>M</math>'' determines a volume form on ''<math>M</math>''. However, in some cases, such as for symplectic and complex manifolds, an added [[integrability condition]] is needed. A ''<math>\mathrm{Sp}(2n,\mathbb{R})</math>''-structure on ''<math>M</math>'' uniquely determines a [[nondegenerate form|nondegenerate]] [[2-form]] on ''<math>M</math>'', but for ''<math>M</math>'' to be symplectic, this 2-form must also be [[closed differential form|closed]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)