Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fredholm operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== * D.E. Edmunds and W.D. Evans (1987), ''Spectral theory and differential operators,'' Oxford University Press. {{ISBN|0-19-853542-2}}. * A. G. Ramm, "[http://www.math.ksu.edu/~ramm/papers/419.pdf A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators]", ''American Mathematical Monthly'', '''108''' (2001) p. 855 (NB: In this paper the word "Fredholm operator" refers to "Fredholm operator of index 0"). * {{mathworld|urlname=FredholmsTheorem|title=Fredholm's Theorem}} * {{springer|id=f/f041470|title=Fredholm theorems|author=B.V. Khvedelidze}} * Bruce K. Driver, "[http://math.ucsd.edu/~driver/231-02-03/Lecture_Notes/compact.pdf Compact and Fredholm Operators and the Spectral Theorem]", ''Analysis Tools with Applications'', Chapter 35, pp. 579β600. * Robert C. McOwen, "[http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1102780323 Fredholm theory of partial differential equations on complete Riemannian manifolds]", ''Pacific J. Math.'' '''87''', no. 1 (1980), 169β185. * Tomasz Mrowka, [http://ocw.mit.edu/courses/mathematics/18-965-geometry-of-manifolds-fall-2004/lecture-notes/lecture16_17.pdf A Brief Introduction to Linear Analysis: Fredholm Operators], Geometry of Manifolds, Fall 2004 (Massachusetts Institute of Technology: MIT OpenCouseWare) {{Functional Analysis}} {{authority control}} {{DEFAULTSORT:Fredholm Operator}} [[Category:Fredholm theory]] [[Category:Linear operators]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)