Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== General === Besides the fundamental property discussed above: <math display="block">\Gamma(z+1) = z\ \Gamma(z)</math> other important functional equations for the gamma function are [[reflection formula|Euler's reflection formula]] <math display="block">\Gamma(1-z) \Gamma(z) = \frac{\pi}{\sin \pi z}, \qquad z \not\in \Z</math> which implies <math display="block">\Gamma(z - n) = (-1)^{n-1} \; \frac{\Gamma(-z) \Gamma(1+z)}{\Gamma(n+1-z)}, \qquad n \in \Z</math> and the [[Multiplication theorem#Gamma function–Legendre formula|Legendre duplication formula]] <math display="block">\Gamma(z) \Gamma\left(z + \tfrac12\right) = 2^{1-2z} \; \sqrt{\pi} \; \Gamma(2z).</math> {{Collapse top|title=Derivation of Euler's reflection formula}} '''Proof 1''' With Euler's infinite product <math display=block>\Gamma(z) = \frac1z \prod_{n=1}^{\infty} \frac{(1+1/n)^z}{1 + z/n}</math> compute <math display=block>\frac{1}{\Gamma(1-z)\Gamma(z)} = \frac{1}{(-z)\Gamma(-z)\Gamma(z)} = z \prod_{n=1}^{\infty} \frac{(1-z/n)(1+z/n)}{(1+1/n)^{-z}(1+1/n)^{z}} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right) = \frac{\sin \pi z}{\pi}\,,</math> where the last equality is a [[Sine#Partial fraction and product expansions of complex sine|known result]]. A similar derivation begins with Weierstrass's definition. '''Proof 2''' First prove that <math display="block">I=\int_{-\infty}^\infty \frac{e^{ax}}{1+e^x}\, dx=\int_0^\infty \frac{v^{a-1}}{1+v}\, dv=\frac{\pi}{\sin\pi a},\quad a\in (0,1).</math> Consider the positively oriented rectangular contour <math>C_R</math> with vertices at <math>R</math>, <math>-R</math>, <math>R+2\pi i</math> and <math>-R+2\pi i</math> where <math>R\in\mathbb{R}^+</math>. Then by the [[residue theorem]], <math display="block">\int_{C_R}\frac{e^{az}}{1+e^z}\, dz=-2\pi ie^{a\pi i}.</math> Let <math display="block">I_R=\int_{-R}^R \frac{e^{ax}}{1+e^x}\, dx</math> and let <math>I_R'</math> be the analogous integral over the top side of the rectangle. Then <math>I_R\to I</math> as <math>R\to\infty</math> and <math>I_R'=-e^{2\pi i a}I_R</math>. If <math>A_R</math> denotes the right vertical side of the rectangle, then <math display="block">\left|\int_{A_R} \frac{e^{az}}{1+e^z}\, dz\right|\le \int_0^{2\pi}\left|\frac{e^{a(R+it)}}{1+e^{R+it}}\right|\, dt\le Ce^{(a-1)R}</math> for some constant <math>C</math> and since <math>a<1</math>, the integral tends to <math>0</math> as <math>R\to\infty</math>. Analogously, the integral over the left vertical side of the rectangle tends to <math>0</math> as <math>R\to\infty</math>. Therefore <math display="block">I-e^{2\pi ia}I=-2\pi ie^{a\pi i},</math> from which <math display="block">I=\frac{\pi}{\sin \pi a},\quad a\in (0,1).</math> Then <math display="block">\Gamma (1-z)=\int_0^\infty e^{-u}u^{-z}\, du=t\int_0^\infty e^{-vt}(vt)^{-z}\, dv,\quad t>0</math> and <math display="block">\begin{align}\Gamma (z)\Gamma (1-z)&=\int_0^\infty\int_0^\infty e^{-t(1+v)}v^{-z}\, dv\, dt\\ &=\int_0^\infty \frac{v^{-z}}{1+v}\, dv\\&=\frac{\pi}{\sin \pi (1-z)}\\&=\frac{\pi}{\sin \pi z},\quad z\in (0,1).\end{align}</math> Proving the reflection formula for all <math>z\in (0,1)</math> proves it for all <math>z\in\mathbb{C}\setminus\mathbb{Z}</math> by analytic continuation. {{Collapse bottom}} {{Collapse top|title=Derivation of the Legendre duplication formula}} The [[beta function]] can be represented as <math display="block">\Beta (z_1,z_2)=\frac{\Gamma (z_1)\Gamma (z_2)}{\Gamma (z_1+z_2)}=\int_0^1 t^{z_1-1}(1-t)^{z_2-1} \, dt.</math> Setting <math>z_1=z_2=z</math> yields <math display="block">\frac{\Gamma^2(z)}{\Gamma (2z)}=\int_0^1 t^{z-1}(1-t)^{z-1} \, dt.</math> After the substitution <math>t=\frac{1+u}{2}</math>: <math display="block">\frac{\Gamma^2(z)}{\Gamma (2z)}=\frac{1}{2^{2z-1}}\int_{-1}^1 \left(1-u^{2}\right)^{z-1} \, du.</math> The function <math>(1-u^2)^{z-1}</math> is even, hence <math display="block">2^{2z-1}\Gamma^2(z)=2\Gamma (2z)\int_0^1 (1-u^2)^{z-1} \, du.</math> Now <math display="block">\Beta \left(\frac{1}{2},z\right)=\int_0^1 t^{\frac{1}{2}-1}(1-t)^{z-1} \, dt, \quad t=s^2.</math> Then <math display="block">\Beta \left(\frac{1}{2},z\right)=2\int_0^1 (1-s^2)^{z-1} \, ds = 2\int_0^1 (1-u^2)^{z-1} \, du.</math> This implies <math display="block">2^{2z-1}\Gamma^2(z)=\Gamma (2z)\Beta \left(\frac{1}{2},z\right).</math> Since <math display="block">\Beta \left(\frac{1}{2},z\right)=\frac{\Gamma \left(\frac{1}{2}\right)\Gamma (z)}{\Gamma \left(z+\frac{1}{2}\right)}, \quad \Gamma \left(\frac{1}{2}\right)=\sqrt{\pi},</math> the Legendre duplication formula follows: <math display="block">\Gamma (z)\Gamma \left(z+\frac{1}{2}\right)=2^{1-2z}\sqrt{\pi} \; \Gamma (2z).</math> {{Collapse bottom}} The duplication formula is a special case of the [[multiplication theorem]] (see <ref name="ReferenceA">{{dlmf|authorlink=Richard Askey|first=R. A.|last=Askey|first2=R.|last2=Roy|id=8.7|title=Series Expansions|ref=none}}</ref> Eq. 5.5.6): <math display="block">\prod_{k=0}^{m-1}\Gamma\left(z + \frac{k}{m}\right) = (2 \pi)^{\frac{m-1}{2}} \; m^{\frac12 - mz} \; \Gamma(mz).</math> A simple but useful property, which can be seen from the limit definition, is: <math display="block">\overline{\Gamma(z)} = \Gamma(\overline{z}) \; \Rightarrow \; \Gamma(z)\Gamma(\overline{z}) \in \mathbb{R} .</math> In particular, with {{math|1=''z'' = ''a'' + ''bi''}}, this product is <math display="block">|\Gamma(a+bi)|^2 = |\Gamma(a)|^2 \prod_{k=0}^\infty \frac{1}{1+\frac{b^2}{(a+k)^2}}</math> If the real part is an integer or a half-integer, this can be finitely expressed in [[Closed-form expression|closed form]]: <math display="block"> \begin{align} |\Gamma(bi)|^2 & = \frac{\pi}{b\sinh \pi b} \\[1ex] \left|\Gamma\left(\tfrac{1}{2}+bi\right)\right|^2 & = \frac{\pi}{\cosh \pi b} \\[1ex] \left|\Gamma\left(1+bi\right)\right|^2 & = \frac{\pi b}{\sinh \pi b} \\[1ex] \left|\Gamma\left(1+n+bi\right)\right|^2 & = \frac{\pi b}{\sinh \pi b} \prod_{k=1}^n \left(k^2 + b^2 \right), \quad n \in \N \\[1ex] \left|\Gamma\left(-n+bi\right)\right|^2 & = \frac{\pi}{b \sinh \pi b} \prod_{k=1}^n \left(k^2 + b^2 \right)^{-1}, \quad n \in \N \\[1ex] \left|\Gamma\left(\tfrac{1}{2} \pm n+bi\right)\right|^2 & = \frac{\pi}{\cosh \pi b} \prod_{k=1}^n \left(\left( k-\tfrac{1}{2}\right)^2 + b^2 \right)^{\pm 1}, \quad n \in \N \\[-1ex]& \end{align} </math> {{Collapse top|title=Proof of absolute value formulas for arguments of integer or half-integer real part}} First, consider the reflection formula applied to <math>z=bi</math>. <math display="block">\Gamma(bi)\Gamma(1-bi)=\frac{\pi}{\sin \pi bi}</math> Applying the recurrence relation to the second term: <math display="block">-bi \cdot \Gamma(bi)\Gamma(-bi)=\frac{\pi}{\sin \pi bi}</math> which with simple rearrangement gives <math display="block">\Gamma(bi)\Gamma(-bi)=\frac{\pi}{-bi\sin \pi bi}=\frac{\pi}{b\sinh \pi b}</math> Second, consider the reflection formula applied to <math>z=\tfrac{1}{2}+bi</math>. <math display="block">\Gamma(\tfrac{1}{2}+bi)\Gamma\left(1-(\tfrac{1}{2}+bi)\right)=\Gamma(\tfrac{1}{2}+bi)\Gamma(\tfrac{1}{2}-bi)=\frac{\pi}{\sin \pi (\tfrac{1}{2}+bi)}=\frac{\pi}{\cos \pi bi}=\frac{\pi}{\cosh \pi b}</math> Formulas for other values of <math>z</math> for which the real part is integer or half-integer quickly follow by [[mathematical induction|induction]] using the recurrence relation in the positive and negative directions. {{Collapse bottom}} Perhaps the best-known value of the gamma function at a non-integer argument is <math display="block">\Gamma\left(\tfrac12\right)=\sqrt{\pi},</math> which can be found by setting <math display="inline">z = \frac{1}{2}</math> in the reflection formula, by using the relation to the [[beta function]] given below with <math display="inline">z_1 = z_2 = \frac{1}{2}</math>, or simply by making the substitution <math>t = u^2</math> in the integral definition of the gamma function, resulting in a [[Gaussian integral]]. In general, for non-negative integer values of <math>n</math> we have: <math display="block">\begin{align} \Gamma\left(\tfrac 1 2 + n\right) &= {(2n)! \over 4^n n!} \sqrt{\pi} = \frac{(2n-1)!!}{2^n} \sqrt{\pi} = \binom{n-\frac{1}{2}}{n} n! \sqrt{\pi} \\[8pt] \Gamma\left(\tfrac 1 2 - n\right) &= {(-4)^n n! \over (2n)!} \sqrt{\pi} = \frac{(-2)^n}{(2n-1)!!} \sqrt{\pi} = \frac{\sqrt{\pi}}{\binom{-1/2}{n} n!} \end{align}</math> where the [[double factorial]] <math>(2n-1)!! = (2n-1)(2n-3)\cdots(3)(1)</math>. See [[Particular values of the gamma function]] for calculated values. It might be tempting to generalize the result that <math display="inline">\Gamma \left( \frac{1}{2} \right) = \sqrt\pi</math> by looking for a formula for other individual values <math>\Gamma(r)</math> where <math>r</math> is rational, especially because according to [[Digamma function#Gauss's digamma theorem|Gauss's digamma theorem]], it is possible to do so for the closely related [[digamma function]] at every rational value. However, these numbers <math>\Gamma(r)</math> are not known to be expressible by themselves in terms of elementary functions. It has been proved that <math>\Gamma (n + r)</math> is a [[transcendental number]] and [[algebraic independence|algebraically independent]] of <math>\pi</math> for any integer <math>n</math> and each of the fractions <math display="inline">r = \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}</math>.<ref>{{cite journal|last=Waldschmidt |first=M. |date=2006 |url=http://www.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf |archive-url=https://web.archive.org/web/20060506050646/http://www.math.jussieu.fr/~miw/articles/pdf/TranscendencePeriods.pdf |archive-date=2006-05-06 |url-status=live |title=Transcendence of Periods: The State of the Art |journal=Pure Appl. Math. Quart. |volume=2 |issue=2 |pages=435–463 |doi=10.4310/pamq.2006.v2.n2.a3|doi-access=free}}</ref> In general, when computing values of the gamma function, we must settle for numerical approximations. The derivatives of the gamma function are described in terms of the [[polygamma function]], {{math|''ψ''{{isup|(0)}}(''z'')}}: <math display="block">\Gamma'(z)=\Gamma(z)\psi^{(0)}(z).</math> For a positive integer {{mvar|m}} the derivative of the gamma function can be calculated as follows: [[File:Plot of gamma function in the complex plane from -2-i to 6+2i with colors created in Mathematica.svg|alt=Gamma function in the complex plane with colors showing its argument|thumb|Colors showing the argument of the gamma function in the complex plane from {{math|−2 − 2''i''}} to {{math|6 + 2''i''}}]] <math display="block">\Gamma'(m+1) = m! \left( - \gamma + \sum_{k=1}^m\frac{1}{k} \right)= m! \left( - \gamma + H(m) \right)\,,</math> where H(m) is the mth [[harmonic number]] and {{math|''γ''}} is the [[Euler–Mascheroni constant]]. For <math>\Re(z) > 0</math> the <math>n</math>th derivative of the gamma function is: <math display="block">\frac{d^n}{dz^n}\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} (\log t)^n \, dt.</math> (This can be derived by differentiating the integral form of the gamma function with respect to <math>z</math>, and using the technique of [[differentiation under the integral sign]].) Using the identity <math display="block">\Gamma^{(n)}(1)=(-1)^n B_n(\gamma, 1! \zeta(2), \ldots, (n-1)! \zeta(n))</math> where <math>\zeta(z)</math> is the [[Riemann zeta function]], and <math>B_n</math> is the <math>n</math>-th [[Bell polynomials|Bell polynomial]], we have in particular the [[Laurent series]] expansion of the gamma function <ref>{{Cite web |title=How to obtain the Laurent expansion of gamma function around $z=0$? |url=https://math.stackexchange.com/q/1287555 |access-date=2022-08-17 |website=Mathematics Stack Exchange |language=en}}</ref> <math display="block">\Gamma(z) = \frac1z - \gamma + \frac12\left(\gamma^2 + \frac{\pi^2}6\right)z - \frac16\left(\gamma^3 + \frac{\gamma\pi^2}2 + 2 \zeta(3)\right)z^2 + O(z^3).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)