Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian units
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Maxwell's equations === {{main|Maxwell's equations}} Here are Maxwell's equations, both in macroscopic and microscopic forms. Only the "differential form" of the equations is given, not the "integral form"; to get the integral forms apply the [[divergence theorem]] or [[Stokes' theorem|Kelvin–Stokes theorem]]. {| class="wikitable plainrowheaders" |+ Maxwell's equations in Gaussian system and ISQ |- ! scope="col" | Name ! scope="col" | Gaussian system ! scope="col" | {{abbr|ISQ|International System of Quantities}} |- ! scope="row" | [[Gauss's law]]{{br}}(macroscopic) | <math>\nabla \cdot \mathbf{D}^{_\mathrm{G}} = 4\pi\rho_\mathrm{f}^{_\mathrm{G}}</math> | <math>\nabla \cdot \mathbf{D}^{_\mathrm{I}} = \rho_\mathrm{f}^{_\mathrm{I}}</math> |- ! scope="row" | [[Gauss's law]]<br />(microscopic) | <math>\nabla \cdot \mathbf{E}^{_\mathrm{G}} = 4\pi\rho^{_\mathrm{G}}</math> | <math>\nabla \cdot \mathbf{E}^{_\mathrm{I}} = \frac{1}{\varepsilon_0} \rho^{_\mathrm{I}}</math> |- ! scope="row" | [[Gauss's law for magnetism]] |<math>\nabla \cdot \mathbf{B}^{_\mathrm{G}} = 0</math> |<math>\nabla \cdot \mathbf{B}^{_\mathrm{I}} = 0</math> |- ! scope="row" | Maxwell–Faraday equation<br />([[Faraday's law of induction]]) | <math>\nabla \times \mathbf{E}^{_\mathrm{G}} + \frac{1}{c}\frac{\partial \mathbf{B}^{_\mathrm{G}}} {\partial t} = 0</math> | <math>\nabla \times \mathbf{E}^{_\mathrm{I}} + \frac{\partial \mathbf{B}^{_\mathrm{I}}} {\partial t} = 0</math> |- ! scope="row" | [[Ampère–Maxwell equation]]<br /> (macroscopic) | <math>\nabla \times \mathbf{H}^{_\mathrm{G}} - \frac{1}{c} \frac{\partial \mathbf{D}^{_\mathrm{G}}} {\partial t} = \frac{4\pi}{c}\mathbf{J}_\mathrm{f}^{_\mathrm{G}}</math> | <math>\nabla \times \mathbf{H}^{_\mathrm{I}} - \frac{\partial \mathbf{D}^{_\mathrm{I}}} {\partial t}= \mathbf{J}_\mathrm{f}^{_\mathrm{I}}</math> |- ! scope="row" | [[Ampère–Maxwell equation]]<br /> (microscopic) | <math>\nabla \times \mathbf{B}^{_\mathrm{G}} - \frac{1}{c}\frac{\partial \mathbf{E}^{_\mathrm{G}}} {\partial t} = \frac{4\pi}{c}\mathbf{J}^{_\mathrm{G}}</math> | <math>\nabla \times \mathbf{B}^{_\mathrm{I}} - \frac{1}{c^2}\frac{\partial \mathbf{E}^{_\mathrm{I}}} {\partial t} = \mu_0\mathbf{J}^{_\mathrm{I}}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)