Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gelfand representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == One of the most significant applications is the existence of a continuous ''functional calculus'' for normal elements in C*-algebra ''A'': An element ''x'' is normal if and only if ''x'' commutes with its adjoint ''x*'', or equivalently if and only if it generates a commutative C*-algebra C*(''x''). By the Gelfand isomorphism applied to C*(''x'') this is *-isomorphic to an algebra of continuous functions on a locally compact space. This observation leads almost immediately to: '''Theorem'''. Let ''A'' be a C*-algebra with identity and ''x'' a normal element of ''A''. Then there is a *-morphism ''f'' β ''f''(''x'') from the algebra of continuous functions on the spectrum Ο(''x'') into ''A'' such that * It maps 1 to the multiplicative identity of ''A''; * It maps the identity function on the spectrum to ''x''. This allows us to apply continuous functions to bounded normal operators on Hilbert space.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)