Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General topology
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Topologies on the real and complex numbers==== There are many ways to define a topology on '''R''', the set of [[real number]]s. The standard topology on '''R''' is generated by the [[Interval (mathematics)#Definitions|open intervals]]. The set of all open intervals forms a [[base (topology)|base]] or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the [[Euclidean space]]s '''R'''<sup>''n''</sup> can be given a topology. In the usual topology on '''R'''<sup>''n''</sup> the basic open sets are the open [[Ball (mathematics)|ball]]s. Similarly, '''C''', the set of [[complex number]]s, and '''C'''<sup>''n''</sup> have a standard topology in which the basic open sets are open balls. The real line can also be given the [[lower limit topology]]. Here, the basic open sets are the half open intervals <nowiki>[</nowiki>''a'', ''b''). This topology on '''R''' is strictly finer than the Euclidean topology defined above; a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology. This example shows that a set may have many distinct topologies defined on it.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)