Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gibbard–Satterthwaite theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sketch of proof == The Gibbard–Satterthwaite theorem can be proved using [[Arrow's impossibility theorem]] for [[Social ranking function|social ranking functions]]. We give a sketch of proof in the simplified case where some voting rule <math>f</math> is assumed to be [[Pareto-efficient]]. It is possible to build a social ranking function <math>\operatorname{Rank}</math>, as follows: in order to decide whether <math>a\prec b</math>, the <math>\operatorname{Rank}</math> function creates new preferences in which <math>a</math> and <math>b</math> are moved to the top of all voters' preferences.{{Clarify|date=March 2024}} Then, <math>\operatorname{Rank}</math> examines whether <math>f</math> chooses <math>a</math> or <math>b</math>. It is possible to prove that, if <math>f</math> is non-manipulable and non-dictatorial, <math>\operatorname{Rank}</math> satisfies independence of irrelevant alternatives. Arrow's impossibility theorem says that, when there are three or more alternatives, such a <math>\operatorname{Rank}</math> function must be a [[Dictatorship mechanism|dictatorship]]. Hence, such a voting rule <math>f</math> must also be a dictatorship.<ref name="agt">{{Cite Algorithmic Game Theory 2007}}</ref>{{rp|214–215}} Later authors have developed other variants of the proof.<ref name="reny" /><ref name="benoit" /><ref name="sen" /><ref name="gardenfors">{{cite journal |last1=Gärdenfors |first1=Peter |date=1977 |title=A Concise Proof of Theorem on Manipulation of Social Choice Functions |journal=Public Choice |volume=32 |pages=137–142 |doi=10.1007/bf01718676 |issn=0048-5829 |jstor=30023000 |s2cid=153421058}}</ref><ref name="barbera">{{cite journal |last1=Barberá |first1=Salvador |date=1983 |title=Strategy-Proofness and Pivotal Voters: A Direct Proof of the Gibbard-Satterthwaite Theorem |journal=International Economic Review |volume=24 |issue=2 |pages=413–417 |doi=10.2307/2648754 |issn=0020-6598 |jstor=2648754}}</ref><ref>{{cite book |last=Dummett |first=Michael |title=Voting Procedures |publisher=Oxford University Press |year=1984 |isbn=978-0198761884}}</ref><ref>{{cite journal |last1=Fara |first1=Rudolf |last2=Salles |first2=Maurice |date=2006 |title=An interview with Michael Dummett: From analytical philosophy to voting analysis and beyond |url=http://eprints.lse.ac.uk/552/1/VPP05_01.pdf |journal=Social Choice and Welfare |volume=27 |issue=2 |pages=347–364 |doi=10.1007/s00355-006-0128-9 |jstor=41106783 |s2cid=46164353}}</ref><ref>{{cite book |last1=Moulin |first1=Hervé |url=http://www.cambridge.org/il/academic/subjects/economics/microeconomics/axioms-cooperative-decision-making |title=Axioms of Cooperative Decision Making |publisher=Cambridge University Press |year=1991 |isbn=9780521424585 |author-link=Hervé Moulin |access-date=10 January 2016}}</ref><ref>{{cite journal |last=Taylor |first=Alan D. |date=April 2002 |title=The manipulability of voting systems |journal=[[The American Mathematical Monthly]] |volume=109 |issue=4 |pages=321–337 |doi=10.2307/2695497 |jstor=2695497}}</ref>{{Excessive citations inline|date=March 2024}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)