Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gram–Schmidt process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Determinant formula == The result of the Gram–Schmidt process may be expressed in a non-recursive formula using [[determinant]]s. <math display="block"> \mathbf{e}_j = \frac{1}{\sqrt{D_{j-1} D_j}} \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_{j-1} \rangle & \langle \mathbf{v}_2, \mathbf{v}_{j-1} \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_{j-1} \rangle \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_j \end{vmatrix} </math> <math display="block"> \mathbf{u}_j = \frac{1}{D_{j-1} } \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_{j-1} \rangle & \langle \mathbf{v}_2, \mathbf{v}_{j-1} \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_{j-1} \rangle \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_j \end{vmatrix} </math> where <math>D_0 = 1</math> and, for <math>j \ge 1</math>, <math>D_j</math> is the [[Gram determinant]] <math display="block"> D_j = \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_j \rangle & \langle \mathbf{v}_2, \mathbf{v}_j \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_j \rangle \end{vmatrix}. </math> Note that the expression for <math>\mathbf{u}_k</math> is a "formal" determinant, i.e. the matrix contains both scalars and vectors; the meaning of this expression is defined to be the result of a [[Laplace expansion|cofactor expansion]] along the row of vectors. The determinant formula for the Gram-Schmidt is computationally (exponentially) slower than the recursive algorithms described above; it is mainly of theoretical interest.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)