Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gram matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Gram determinant== The '''Gram determinant''' or '''Gramian''' is the determinant of the Gram matrix: <math display=block>\bigl|G(v_1, \dots, v_n)\bigr| = \begin{vmatrix} \langle v_1,v_1\rangle & \langle v_1,v_2\rangle &\dots & \langle v_1,v_n\rangle \\ \langle v_2,v_1\rangle & \langle v_2,v_2\rangle &\dots & \langle v_2,v_n\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_n,v_1\rangle & \langle v_n,v_2\rangle &\dots & \langle v_n,v_n\rangle \end{vmatrix}.</math> If <math>v_1, \dots, v_n</math> are vectors in <math>\mathbb{R}^m</math> then it is the square of the ''n''-dimensional volume of the [[Parallelepiped#Parallelotope|parallelotope]] formed by the vectors. In particular, the vectors are [[Linear independence|linearly independent]] [[if and only if]] the parallelotope has nonzero ''n''-dimensional volume, if and only if Gram determinant is nonzero, if and only if the Gram matrix is [[Non-singular matrix|nonsingular]]. When {{nowrap|''n'' > ''m''}} the determinant and volume are zero. When {{nowrap|1=''n'' = ''m''}}, this reduces to the standard theorem that the absolute value of the determinant of ''n'' ''n''-dimensional vectors is the ''n''-dimensional volume. The volume of the [[simplex]] formed by the vectors is {{math|Volume(parallelotope) / ''n''!}}. When <math>v_1, \dots, v_n</math> are linearly independent, the distance between a point <math>x</math> and the linear span of <math>v_1, \dots, v_n</math> is <math>\sqrt{\frac{|G(x,v_1, \dots, v_n)|}{|G(v_1, \dots, v_n)|}}</math>. Consider the moment problem: given <math>c_1, \dots, c_n \in \mathbb C</math>, find a vector <math>v</math> such that <math display="inline">\left\langle v, v_i\right\rangle=c_i</math>, for all <math display="inline">1 \leqslant i \leqslant n</math>. There exists a unique solution with minimal norm:<ref>{{Cite journal |last1=Ramon |first1=Garcia, Stephan |last2=Javad |first2=Mashreghi |last3=T. |first3=Ross, William |date=2023-01-30 |title=Operator Theory by Example |url=https://academic.oup.com/book/45766 |journal=OUP Academic |language=en |doi=10.1093/o|doi-broken-date=13 April 2025 }}</ref>{{Pg|page=38}}<math display="block">v=-\frac{1}{G\left(v_1, v_2, \ldots, v_n\right)} \det \begin{bmatrix} 0 & c_1 & c_2 & \cdots & c_n \\ v_1 & \left\langle v_1, v_1\right\rangle & \left\langle v_1, v_2\right\rangle & \cdots & \left\langle v_1, v_n\right\rangle \\ v_2 & \left\langle v_2, v_1\right\rangle & \left\langle v_2, v_2\right\rangle & \cdots & \left\langle v_2, v_n\right\rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_n & \left\langle v_n, v_1\right\rangle & \left\langle v_n, v_2\right\rangle & \cdots & \left\langle v_n, v_n\right\rangle \end{bmatrix}</math>The Gram determinant can also be expressed in terms of the [[exterior product]] of vectors by :<math>\bigl|G(v_1, \dots, v_n)\bigr| = \| v_1 \wedge \cdots \wedge v_n\|^2.</math> The Gram determinant therefore supplies an [[exterior product#inner product|inner product]] for the space {{tmath|{\textstyle\bigwedge}^{\!n}(V)}}. If an [[orthonormal basis]] ''e''<sub>''i''</sub>, {{nowrap|1=''i'' = 1, 2, ..., ''n''}} on {{tmath|V}} is given, the vectors : <math> e_{i_1} \wedge \cdots \wedge e_{i_n},\quad i_1 < \cdots < i_n, </math> will constitute an orthonormal basis of ''n''-dimensional volumes on the space {{tmath|{\textstyle\bigwedge}^{\!n}(V)}}. Then the Gram determinant <math>\bigl|G(v_1, \dots, v_n)\bigr|</math> amounts to an ''n''-dimensional [[Pythagorean Theorem#Sets_of_m-dimensional_objects_in_n-dimensional_space|Pythagorean Theorem]] for the volume of the parallelotope formed by the vectors <math>v_1 \wedge \cdots \wedge v_n</math> in terms of its projections onto the basis volumes <math>e_{i_1} \wedge \cdots \wedge e_{i_n}</math>. When the vectors <math>v_1, \ldots, v_n \in \mathbb{R}^m</math> are defined from the positions of points <math>p_1, \ldots, p_n</math> relative to some reference point <math>p_{n+1}</math>, :<math display="block">(v_1, v_2, \ldots, v_n) = (p_1 - p_{n+1}, p_2 - p_{n+1}, \ldots, p_n - p_{n+1})\,,</math> then the Gram determinant can be written as the difference of two Gram determinants, :<math display=block> \bigl|G(v_1, \dots, v_n)\bigr| = \bigl|G((p_1, 1), \dots, (p_{n+1}, 1))\bigr| - \bigl|G(p_1, \dots, p_{n+1})\bigr|\,, </math> where each <math>(p_j, 1)</math> is the corresponding point <math>p_j</math> supplemented with the coordinate value of 1 for an <math>(m+1)</math>-st dimension.{{Citation needed|reason=This relation between Gram matrices is apparently true but needs a citation to support its [[WP:N|notability]].|date=February 2022}} Note that in the common case that {{math|1=''n'' = ''m''}}, the second term on the right-hand side will be zero.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)