Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gravitational constant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Modern value === [[Paul R. Heyl]] (1930) published the value of {{val|6.670|(5)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}} (relative uncertainty 0.1%),<ref>{{cite journal |first=P. R. |last=Heyl |author-link=Paul R. Heyl |title=A redetermination of the constant of gravitation |journal= Bureau of Standards Journal of Research|volume=5 |issue=6 |year=1930 |pages=1243β1290|doi=10.6028/jres.005.074 |doi-access=free }}<!--Also https://archive.org/details/redeterminationo56124heyl, and a shorter version at https://europepmc.org/articles/PMC1085130--></ref> improved to {{val|6.673|(3)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}} (relative uncertainty 0.045% = 450 ppm) in 1942.<ref>P. R. Heyl and P. Chrzanowski (1942), cited after Sagitov (1969:715).</ref> However, Heyl used the statistical spread as his standard deviation, and he admitted himself that measurements using the same material yielded very similar results while measurements using different materials yielded vastly different results. He spent the next 12 years after his 1930 paper to do more precise measurements, hoping that the composition-dependent effect would go away, but it did not, as he noted in his final paper from the year 1942. Published values of {{mvar|G}} derived from high-precision measurements since the 1950s have remained compatible with Heyl (1930), but within the relative uncertainty of about 0.1% (or 1000 ppm) have varied rather broadly, and it is not entirely clear whether the uncertainty has been reduced at all since the 1942 measurement. Some measurements published in the 1980s to 2000s were, in fact, mutually exclusive.<ref name=gillies/><ref name=codata2002>{{cite journal|first1=Peter J. |last1=Mohr |first2=Barry N. |last2=Taylor |title=CODATA recommended values of the fundamental physical constants: 2002 |journal=Reviews of Modern Physics |year=2012 |volume=77 |issue=1 | pages=1β107 |url=http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/other%20rmp%20articles/CODATA2005.pdf |access-date=1 July 2006 |doi=10.1103/RevModPhys.77.1 |bibcode=2005RvMP...77....1M |citeseerx=10.1.1.245.4554 |url-status=dead |archive-url=https://web.archive.org/web/20070306174141/http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/other%20rmp%20articles/CODATA2005.pdf |archive-date=6 March 2007|arxiv=1203.5425 }} Section Q (pp. 42β47) describes the mutually inconsistent measurement experiments from which the CODATA value for {{mvar|G}} was derived.</ref> Establishing a standard value for {{mvar|G}} with a relative standard uncertainty better than 0.1% has therefore remained rather speculative. By 1969, the value recommended by the [[National Institute of Standards and Technology]] (NIST) was cited with a relative standard uncertainty of 0.046% (460 ppm), lowered to 0.012% (120 ppm) by 1986. But the continued publication of conflicting measurements led NIST to considerably increase the standard uncertainty in the 1998 recommended value, by a factor of 12, to a standard uncertainty of 0.15%, larger than the one given by Heyl (1930). The uncertainty was again lowered in 2002 and 2006, but once again raised, by a more conservative 20%, in 2010, matching the relative standard uncertainty of 120 ppm published in 1986.<ref>{{Cite journal|url = http://physics.nist.gov/cuu/pdf/RevModPhysCODATA2010.pdf|title = CODATA recommended values of the fundamental physical constants: 2010|date = 13 November 2012|journal = Reviews of Modern Physics |doi = 10.1103/RevModPhys.84.1527|bibcode=2012RvMP...84.1527M|arxiv = 1203.5425 |volume=84 |issue = 4|pages=1527β1605|last1 = Mohr|first1 = Peter J.|last2 = Taylor|first2 = Barry N.|last3 = Newell|first3 = David B.|s2cid = 103378639|citeseerx = 10.1.1.150.3858}}</ref> For the 2014 update, CODATA reduced the uncertainty to 46 ppm, less than half the 2010 value, and one order of magnitude below the 1969 recommendation. The following table shows the NIST recommended values published since 1969: [[File:Gravitational constant historical.png|thumb|350px|Timeline of measurements and recommended values for ''G'' since 1900: values recommended based on a literature review are shown in red, individual torsion balance experiments in blue, other types of experiments in green.]] {|class=wikitable |+Recommended values for ''G'' !scope="col"| Year !scope="col"| ''G'' <br />{{bracket|10{{sup|β11}} m{{sup|3}}β kg{{sup|β1}}β s{{sup|β2}}}} ! scope="col"|Relative standard uncertainty !scope="col"| Ref. |- !scope="row"|1969 | {{val|6.6732|(31)}} || 460 ppm || <ref>{{cite journal | last1=Taylor | first1=B. N. | last2=Parker | first2=W. H. | last3=Langenberg | first3=D. N. | title=Determination of ''e''/''h'', Using Macroscopic Quantum Phase Coherence in Superconductors: Implications for Quantum Electrodynamics and the Fundamental Physical Constants | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=41 | issue=3 | date=1969-07-01 | issn=0034-6861 | doi=10.1103/revmodphys.41.375 | bibcode=1969RvMP...41..375T | pages=375β496}}</ref> |- !scope="row"|1973 | {{val|6.6720|(49)}} || 730 ppm || <ref>{{cite journal | last1=Cohen | first1=E. Richard | last2=Taylor | first2=B. N. | title=The 1973 Least-Squares Adjustment of the Fundamental Constants | journal=Journal of Physical and Chemical Reference Data | publisher=AIP Publishing | volume=2 | issue=4 | year=1973 | issn=0047-2689 | doi=10.1063/1.3253130 | bibcode=1973JPCRD...2..663C | pages=663β734| hdl=2027/pst.000029951949 | hdl-access=free }}</ref> |- !scope="row"|1986 | {{val|6.67449|(81)}} || 120 ppm || <ref>{{cite journal | last1=Cohen | first1=E. Richard | last2=Taylor | first2=Barry N. | title=The 1986 adjustment of the fundamental physical constants | journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=59 | issue=4 | date=1987-10-01 | issn=0034-6861 | doi=10.1103/revmodphys.59.1121 | bibcode=1987RvMP...59.1121C | pages=1121β1148}}</ref> |- !scope="row"|1998 | {{val|6.673|(10)}} || 1500 ppm || <ref>{{cite journal | last1=Mohr | first1=Peter J. | last2=Taylor | first2=Barry N. | title=CODATA recommended values of the fundamental physical constants: 1998 | journal=Reviews of Modern Physics | volume=72 | issue=2 | year=2012 | issn=0034-6861 | doi=10.1103/revmodphys.72.351 | bibcode=2000RvMP...72..351M | pages=351β495| arxiv=1203.5425 }}</ref> |- !scope="row"|2002 | {{val|6.6742|(10)}} || 150 ppm || <ref>{{cite journal | last1=Mohr | first1=Peter J. | last2=Taylor | first2=Barry N. | title=CODATA recommended values of the fundamental physical constants: 2002 | journal=Reviews of Modern Physics | volume=77 | issue=1 | year=2012 | issn=0034-6861 | doi=10.1103/revmodphys.77.1 | bibcode=2005RvMP...77....1M | pages=1β107| arxiv=1203.5425 }}</ref> |- !scope="row"|2006 | {{val|6.67428|(67)}} || 100 ppm || <ref>{{cite journal | last1=Mohr | first1=Peter J. | last2=Taylor | first2=Barry N. | last3=Newell | first3=David B. | title=CODATA recommended values of the fundamental physical constants: 2006 | journal=Journal of Physical and Chemical Reference Data | volume=37 | issue=3 | year=2012 | issn=0047-2689 | doi=10.1063/1.2844785 | bibcode=2008JPCRD..37.1187M | pages=1187β1284| arxiv=1203.5425 }}</ref> |- !scope="row"|2010 | {{val|6.67384|(80)}} || 120 ppm || <ref>{{cite journal | last1=Mohr | first1=Peter J. | last2=Taylor | first2=Barry N. | last3=Newell | first3=David B. | title=CODATA Recommended Values of the Fundamental Physical Constants: 2010 | journal=Journal of Physical and Chemical Reference Data | volume=41 | issue=4 | year=2012 | pages=1527β1605 | issn=0047-2689 | doi=10.1063/1.4724320 | bibcode=2012JPCRD..41d3109M | arxiv=1203.5425 }}</ref> |- !scope="row"|2014 | {{val|6.67408|(31)}} || 46 ppm || <ref>{{cite journal | last1=Mohr | first1=Peter J. | last2=Newell | first2=David B. | last3=Taylor | first3=Barry N. | title=CODATA Recommended Values of the Fundamental Physical Constants: 2014 | journal=Journal of Physical and Chemical Reference Data | volume=45 | issue=4 | year=2016 | pages=1527β1605 | issn=0047-2689 | doi=10.1063/1.4954402 | bibcode=2016JPCRD..45d3102M | arxiv=1203.5425 }}</ref> |- !scope="row"|2018 | {{val|6.67430|(15)}} || 22 ppm || <ref>Eite Tiesinga, Peter J. Mohr, David B. Newell, and Barry N. Taylor (2019), "[http://physics.nist.gov/constants The 2018 CODATA Recommended Values of the Fundamental Physical Constants]" (Web Version 8.0). Database developed by J. Baker, M. Douma, and [[Svetlana Kotochigova|S. Kotochigova]]. National Institute of Standards and Technology, Gaithersburg, MD 20899.</ref> |- !scope="row"|2022 | {{val|6.67430|(15)}} || 22 ppm || <ref>{{citation |author1=Mohr, P. |author2=Tiesinga, E. |author3=Newell, D. |author4=Taylor, B. |date=2024-05-08 |title=Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants |work=NIST |url=https://www.nist.gov/publications/codata-internationally-reconmmended-2022-values-fundamental-physical-constants |access-date=2024-05-15 }}</ref> |- |} In the January 2007 issue of ''[[Science (journal)|Science]]'', Fixler et al. described a measurement of the gravitational constant by a new technique, [[atom interferometry]], reporting a value of {{nowrap|1={{math|''G''}} = {{val|6.693|(34)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}}}}, 0.28% (2800 ppm) higher than the 2006 CODATA value.<ref>{{cite journal |first1=J. B. |last1=Fixler |first2=G. T. |last2=Foster |first3=J. M. |last3=McGuirk |first4=M. A. |last4=Kasevich |s2cid=6271411 |title=Atom Interferometer Measurement of the Newtonian Constant of Gravity |date=5 January 2007 |volume=315 |issue=5808 |pages=74β77 |doi=10.1126/science.1135459 |journal=Science |pmid=17204644 |bibcode=2007Sci...315...74F }}</ref> An improved cold atom measurement by Rosi et al. was published in 2014 of {{nowrap|1={{math|''G''}} = {{val|6.67191|(99)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}}}}.<ref> {{cite journal |last1=Rosi |first1=G. |last2=Sorrentino |first2=F. |last3=Cacciapuoti |first3=L. |last4=Prevedelli |first4=M. |last5=Tino |first5=G. M. |title=Precision measurement of the Newtonian gravitational constant using cold atoms |journal=Nature |volume=510 |issue=7506 |date=26 June 2014 |pages=518β521 |url=http://www2.fisica.unlp.edu.ar/materias/FisGral2semestre2/Rosi.pdf |url-status=live |archive-url=https://ghostarchive.org/archive/20221009/http://www2.fisica.unlp.edu.ar/materias/FisGral2semestre2/Rosi.pdf |archive-date=2022-10-09 |doi=10.1038/nature13433 |pmid=24965653 |arxiv=1412.7954 |s2cid=4469248 |bibcode=2014Natur.510..518R }}</ref><ref> {{cite journal |last1=Schlamminger |first1=Stephan |title=Fundamental constants: A cool way to measure big G |journal=Nature |volume=510 |issue=7506 |pages=478β480 |date=18 June 2014 |url=https://www.nature.com/articles/nature13507.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.nature.com/articles/nature13507.pdf |archive-date=2022-10-09 |url-status=live |doi=10.1038/nature13507 |doi-access=free |bibcode=2014Natur.510..478S |pmid=24965646 }}</ref> Although much closer to the accepted value (suggesting that the Fixler ''et al.'' measurement was erroneous), this result was 325 ppm below the recommended 2014 CODATA value, with non-overlapping [[standard uncertainty]] intervals. <!-- 6.67191(99) vs. 6.67408(31) [2014], a difference of 0.00217(104). Also *barely* not overlapping with the 2010 interval, 6.67384(80) [2010] (differences 0.00193(127) and 0.00024(86)). This doesn't mean anything beyond "2-sigma effect" until the experiment is repeated. --> As of 2018, efforts to re-evaluate the conflicting results of measurements are underway, coordinated by NIST, notably a repetition of the experiments reported by Quinn et al. (2013).<ref>{{cite journal |author1=C. Rothleitner |author2=S. Schlamminger |title=Invited Review Article: Measurements of the Newtonian constant of gravitation, G |journal=Review of Scientific Instruments |volume=88 |issue=11 |pages=111101 |id=111101 |year=2017 |doi=10.1063/1.4994619 |pmid=29195410 |pmc=8195032 |quote=However, re-evaluating or repeating experiments that have already been performed may provide insights into hidden biases or dark uncertainty. NIST has the unique opportunity to repeat the experiment of Quinn et al. [2013] with an almost identical setup. By mid-2018, NIST researchers will publish their results and assign a number as well as an uncertainty to their value.|bibcode=2017RScI...88k1101R |doi-access=free }} Referencing: * {{cite journal |author1=T. Quinn |author2=H. Parks |author3=C. Speake |author4=R. Davis |title=Improved determination of G using two methods |journal=Phys. Rev. Lett. |volume=111 |issue=10 |pages=101102 |id=101102 |year=2013 |doi=10.1103/PhysRevLett.111.101102 |pmid=25166649 |bibcode=2013PhRvL.111j1102Q |url=https://www.bipm.org/utils/en/pdf/PhysRevLett.111.101102.pdf |access-date=4 August 2019 |archive-date=4 December 2020 |archive-url=https://web.archive.org/web/20201204172116/https://www.bipm.org/utils/en/pdf/PhysRevLett.111.101102.pdf |url-status=dead }} The 2018 experiment was described by {{cite conference |author=C. Rothleitner |url=https://www.bipm.org/cc/CODATA-TGFC/Allowed/2015-02/Rothleitner.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.bipm.org/cc/CODATA-TGFC/Allowed/2015-02/Rothleitner.pdf |archive-date=2022-10-09 |url-status=live |title=Newton's Gravitational Constant 'Big' G β A proposed Free-fall Measurement |conference=CODATA Fundamental Constants Meeting, Eltville β 5 February 2015 }}</ref> In August 2018, a Chinese research group announced new measurements based on torsion balances, {{val|6.674184|(78)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}} and {{val|6.674484|(78)|e=β11|u=m<sup>3</sup>β kg<sup>β1</sup>β s<sup>β2</sup>}} based on two different methods.<ref>{{cite journal|first=Qing |last=Li |s2cid=52121922 |display-authors=etal |title=Measurements of the gravitational constant using two independent methods |journal=Nature |volume=560 |issue=7720 |pages=582β588 |year=2018 |doi=10.1038/s41586-018-0431-5|pmid=30158607 |bibcode=2018Natur.560..582L }}. See also: {{cite news|url=https://www.techexplorist.com/physicists-precise-measurement-ever-gravitys-strength/16643/ |title=Physicists just made the most precise measurement ever of Gravity's strength |date=31 August 2018 |access-date=13 October 2018 }}</ref> These are claimed as the most accurate measurements ever made, with standard uncertainties cited as low as 12 ppm. The difference of 2.7{{px1}}[[standard deviation|''Ο'']] between the two results suggests there could be sources of error unaccounted for.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)