Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group 5 element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Oxyanions ==== [[File:decavanadate polyhedra.png|thumb|The [[decavanadate]] structure]] <!-- [[File:Ammonium-metavanadate-chains-3D.png|thumb|upright|Metavanadate chains]] -->In aqueous solution, vanadium(V) forms an extensive family of [[oxyanion]]s as established by [[Vanadium-51 nuclear magnetic resonance|<sup>51</sup>V NMR spectroscopy]].<ref name="Rehder">{{cite book |doi=10.1016/S0066-4103(07)62002-X|title=Vanadium-51 NMR|series=Annual Reports on NMR Spectroscopy|year=2007|last1=Rehder|first1=D.|last2=Polenova|first2=T.|last3=Bühl|first3=M.|volume=62|pages=49–114|isbn=9780123739193}}</ref> The interrelationships in this family are described by the [[predominance diagram]], which shows at least 11 species, depending on pH and concentration.<ref>{{Greenwood&Earnshaw|page=984}}</ref> The tetrahedral orthovanadate ion, {{chem|VO|4|3−}}, is the principal species present at pH 12–14. Similar in size and charge to phosphorus(V), vanadium(V) also parallels its chemistry and crystallography. [[Sodium orthovanadate|Orthovanadate]] V{{chem|O|4|3−}} is used in [[protein crystallography]]<ref>{{cite journal|volume= 577|issue= 3|doi= 10.1016/j.febslet.2004.10.022|pmid= 15556602|date= 2004|title= The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes|first1= Irmgard|last1= Sinning|journal= FEBS Letters|last2= Hol|first2= Wim G. J.|pages= 315–21|s2cid= 8328704|doi-access= free|bibcode= 2004FEBSL.577..315D}}</ref> to study the [[biochemistry]] of phosphate.<ref>{{cite journal|volume= 181|pmc= 1161148|date= 1979|title= Inhibition of human alkaline phosphatases by vanadate|first= Lorne E.|last= Seargeant|author2=Stinson, Robert A. |journal= Biochemical Journal|pmid=486156|issue=1|pages= 247–50|doi= 10.1042/bj1810247}}</ref> Beside that, this anion also has been shown to interact with activity of some specific enzymes.<ref>{{Cite journal |last1=Crans |first1=Debbie C. |last2=Simone |first2=Carmen M. |date=1991-07-09 |title=Nonreductive interaction of vanadate with an enzyme containing a thiol group in the active site: glycerol-3-phosphate dehydrogenase |url=https://pubs.acs.org/doi/abs/10.1021/bi00241a015 |journal=Biochemistry |language=en |volume=30 |issue=27 |pages=6734–6741 |doi=10.1021/bi00241a015 |pmid=2065057 |issn=0006-2960|url-access=subscription }}</ref><ref>{{Cite journal |last1=Karlish |first1=S. J. D. |last2=Beaugé |first2=L. A. |last3=Glynn |first3=I. M. |date=Nov 1979 |title=Vanadate inhibits (Na+ + K+)ATPase by blocking a conformational change of the unphosphorylated form |url=https://www.nature.com/articles/282333a0 |journal=Nature |language=en |volume=282 |issue=5736 |pages=333–335 |doi=10.1038/282333a0 |pmid=228199 |bibcode=1979Natur.282..333K |s2cid=4341480 |issn=1476-4687|url-access=subscription }}</ref> The tetrathiovanadate [VS<sub>4</sub>]<sup>3−</sup> is analogous to the orthovanadate ion.<ref>{{Greenwood&Earnshaw|page=988}}</ref> At lower pH values, the monomer [HVO<sub>4</sub>]<sup>2−</sup> and dimer [V<sub>2</sub>O<sub>7</sub>]<sup>4−</sup> are formed, with the monomer predominant at vanadium concentration of less than c. 10<sup>−2</sup>M (pV > 2, where pV is equal to the minus value of the logarithm of the total vanadium concentration/M). The formation of the divanadate ion is analogous to the formation of the [[dichromate]] ion. As the pH is reduced, further protonation and condensation to [[vanadate|polyvanadates]] occur: at pH 4–6 [H<sub>2</sub>VO<sub>4</sub>]<sup>−</sup> is predominant at pV greater than ca. 4, while at higher concentrations trimers and tetramers are formed. Between pH 2–4 [[decavanadate]] predominates, though its formation from orthovanadate is optimized at pH 4–7, represented by this reaction:<ref name="one">{{cite book |author1=Johnson, G. |title=Inorganic Syntheses |author2=Murmann, R. K. |date=1979 |isbn=978-0-471-04542-7 |volume=19 |pages=140–145 |chapter=Sodium and Ammonium Decayanadates(V) |doi=10.1002/9780470132500.ch32}}</ref> :{{Chem2|10 Na3[VO4] + 24 HOAc → Na6[V10O28] + 12 H2O + 24 NaOAc}} In decavanadate, each V(V) center is surrounded by six oxide [[ligand]]s.<ref name="HollemanAF" /> Vanadic acid, H<sub>3</sub>VO<sub>4</sub> exists only at very low concentrations because protonation of the tetrahedral species [H<sub>2</sub>VO<sub>4</sub>]<sup>−</sup> results in the preferential formation of the octahedral [VO<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup> species. In strongly acidic solutions, pH < 2, [VO<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup> is the predominant species, while the oxide V<sub>2</sub>O<sub>5</sub> precipitates from solution at high concentrations.<ref>{{Cite journal |last=Sadoc |first=Aymeric |last2=Messaoudi |first2=Sabri |last3=Furet |first3=Eric |last4=Gautier |first4=Régis |last5=Le Fur |first5=Eric |last6=le Pollès |first6=Laurent |last7=Pivan |first7=Jean-Yves |date=2007-06-01 |title=Structure and Stability of VO 2 + in Aqueous Solution: A Car−Parrinello and Static ab Initio Study |url=https://pubs.acs.org/doi/10.1021/ic0614519 |journal=Inorganic Chemistry |language=en |volume=46 |issue=12 |pages=4835–4843 |doi=10.1021/ic0614519 |issn=0020-1669|url-access=subscription }}</ref> The oxide is formally the [[acidic oxide|acid anhydride]] of vanadic acid. The structures of many [[vanadate]] compounds have been determined by X-ray crystallography.<ref>{{Cite journal |last=Davies |first=Douglas R. |last2=Hol |first2=Wim G.J. |date=2004-11-19 |title=The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes |url=https://febs.onlinelibrary.wiley.com/doi/10.1016/j.febslet.2004.10.022 |journal=FEBS Letters |language=en |volume=577 |issue=3 |pages=315–321 |doi=10.1016/j.febslet.2004.10.022 |issn=0014-5793}}</ref> [[File:VinwaterPourbaixdiagram2.svg|thumb|right|The [[Pourbaix diagram]] for vanadium in water, which shows the [[redox]] potentials between various vanadium species in different oxidation states.<ref>{{cite journal|journal= Electrochimica Acta|volume= 42|date= 1997|pages= 579–586|doi= 10.1016/S0013-4686(96)00202-2|title= Electrochemical behavior of vanadium in aqueous solutions of different pH|first= F. M.|last= Al-Kharafi|author2=Badawy, W. A. |issue= 4}}</ref>]] Vanadium(V) forms various peroxo complexes, most notably in the active site of the vanadium-containing [[bromoperoxidase]] enzymes. The species VO(O)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub><sup>+</sup> is stable in acidic solutions. In alkaline solutions, species with 2, 3 and 4 peroxide groups are known; the last forms violet salts with the formula M<sub>3</sub>V(O<sub>2</sub>)<sub>4</sub> nH<sub>2</sub>O (M= Li, Na, etc.), in which the vanadium has an 8-coordinate dodecahedral structure.<ref>{{Greenwood&Earnshaw}}, p994.</ref><ref>{{cite book|date=1992|url=https://books.google.com/books?id=Lmt3x9CyfLgC&pg=PA128|page=128|title=Catalytic oxidations with hydrogen peroxide as oxidant|author=Strukul, Giorgio|publisher=Springer|isbn=978-0-7923-1771-5}}</ref> Niobates are generated by dissolving the pentoxide in [[Base (chemistry)|basic]] [[hydroxide]] solutions or by melting it in alkali metal oxides. Examples are [[lithium niobate]] ({{chem2|LiNbO3}}) and lanthanum niobate ({{chem2|LaNbO4}}). In the lithium niobate is a trigonally distorted [[Perovskite (structure)|perovskite]]-like structure, whereas the lanthanum niobate contains lone {{chem|NbO|4|3-}} ions.<ref name="HollemanAF" /> Tantalates, compounds containing [TaO<sub>4</sub>]<sup>3−</sup> or [TaO<sub>3</sub>]<sup>−</sup> are numerous. [[Lithium tantalate]] (LiTaO<sub>3</sub>) adopts a perovskite structure. [[Lanthanum]] tantalate (LaTaO<sub>4</sub>) contains isolated {{chem|TaO|4|3−}} tetrahedra.<ref name="HollemanAF" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)