Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Grover's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebraic proof of correctness == To complete the algebraic analysis, we need to find out what happens when we repeatedly apply <math>U_s U_\omega</math>. A natural way to do this is by eigenvalue analysis of a matrix. Notice that during the entire computation, the state of the algorithm is a linear combination of <math>s</math> and <math>\omega</math>. We can write the action of <math>U_s</math> and <math>U_\omega</math> in the space spanned by <math>\{|s\rang, |\omega\rang\}</math> as: <math>\begin{align} U_s : a |\omega \rang + b |s \rang &\mapsto [|\omega \rang \, | s \rang] \begin{bmatrix} -1 & 0 \\ 2/\sqrt{N} & 1 \end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}. \\ U_\omega : a |\omega \rang + b |s \rang &\mapsto [|\omega \rang \, | s \rang] \begin{bmatrix} -1 & -2/\sqrt{N} \\ 0 & 1 \end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}. \end{align}</math> So in the basis <math>\{ |\omega\rang, |s\rang \}</math> (which is neither orthogonal nor a basis of the whole space) the action <math>U_sU_\omega</math> of applying <math>U_\omega</math> followed by <math>U_s</math> is given by the matrix <math display="block"> U_sU_\omega = \begin{bmatrix} -1 & 0 \\ 2/\sqrt{N} & 1 \end{bmatrix} \begin{bmatrix} -1 & -2/\sqrt{N} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2/\sqrt{N} \\ -2/\sqrt{N} & 1-4/N \end{bmatrix}.</math> This matrix happens to have a very convenient [[Jordan form]]. If we define <math>t = \arcsin(1/\sqrt{N})</math>, it is <math display="block"> U_sU_\omega = M \begin{bmatrix} e^{2it} & 0 \\ 0 & e^{-2it}\end{bmatrix} M^{-1}</math> where <math>M = \begin{bmatrix}-i & i \\ e^{it} & e^{-it} \end{bmatrix}.</math> It follows that ''r''-th power of the matrix (corresponding to ''r'' iterations) is <math display="block"> (U_sU_\omega)^r = M \begin{bmatrix} e^{2rit} & 0 \\ 0 & e^{-2rit}\end{bmatrix} M^{-1}.</math> Using this form, we can use trigonometric identities to compute the probability of observing ''ω'' after ''r'' iterations mentioned in the previous section, <math display="block">\left|\begin{bmatrix}\lang\omega|\omega\rang & \lang\omega|s\rang\end{bmatrix}(U_sU_\omega)^r \begin{bmatrix}0 \\ 1\end{bmatrix} \right|^2 = \sin^2\left( (2r+1)t\right).</math> Alternatively, one might reasonably imagine that a near-optimal time to distinguish would be when the angles 2''rt'' and β2''rt'' are as far apart as possible, which corresponds to <math>2rt \approx \pi/2</math>, or <math>r = \pi/4t = \pi/4\arcsin(1/\sqrt{N}) \approx \pi\sqrt{N}/4</math>. Then the system is in state <math display="block"> [|\omega \rang \, | s \rang] (U_sU_\omega)^r \begin{bmatrix}0\\1\end{bmatrix} \approx [|\omega \rang \, | s \rang] M \begin{bmatrix} i & 0 \\ 0 & -i\end{bmatrix} M^{-1} \begin{bmatrix}0\\1\end{bmatrix} = | \omega \rang \frac{1}{\cos(t)} - |s \rang \frac{\sin(t)}{\cos(t)}.</math> A short calculation now shows that the observation yields the correct answer ''ω'' with error <math>O\left (\frac{1}{N} \right)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)