Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Happy number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Happy primes== A <math>b</math>-happy prime is a number that is both <math>b</math>-happy and [[prime number|prime]]. Unlike happy numbers, rearranging the digits of a <math>b</math>-happy prime will not necessarily create another happy prime. For instance, while 19 is a 10-happy prime, 91 = 13 Γ 7 is not prime (but is still 10-happy). All prime numbers are 2-happy and 4-happy primes, as [[base 2]] and [[base 4]] are happy bases. ===6-happy primes=== In [[base 6]], the 6-happy primes below 1296 = 6<sup>4</sup> are :211, 1021, 1335, 2011, 2425, 2555, 3351, 4225, 4441, 5255, 5525 ===10-happy primes=== In [[base 10]], the 10-happy primes below 500 are :7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487 {{OEIS|id=A035497}}. The [[palindromic prime]] {{nowrap|10<sup>150006</sup> + {{val|7426247e75000}} + 1}} is a 10-happy prime with {{val|150,007}} digits because the many 0s do not contribute to the sum of squared digits, and {{nowrap|1<sup>2</sup> + 7<sup>2</sup> + 4<sup>2</sup> + 2<sup>2</sup> + 6<sup>2</sup> + 2<sup>2</sup> + 4<sup>2</sup> + 7<sup>2</sup> + 1<sup>2</sup>}} = 176, which is a 10-happy number. Paul Jobling discovered the prime in 2005.<ref>{{cite web |url=http://primes.utm.edu/primes/page.php?id=76550 |title=The Prime Database: 10<sup>150006</sup> + 7426247 Β· 10<sup>75000</sup> + 1 |author=Chris K. Caldwell |work=utm.edu}}</ref> {{As of|2010}}, the largest known 10-happy prime is 2<sup>42643801</sup> β 1 (a [[Mersenne prime]]).{{Dubious|date=December 2017}} Its decimal expansion has {{val|12,837,064}} digits.<ref>{{cite web |url=http://primes.utm.edu/primes/page.php?id=88847 |title=The Prime Database: 2<sup>42643801</sup> β 1 |author=Chris K. Caldwell |work=utm.edu}}</ref> ===12-happy primes=== In [[base 12]], there are no 12-happy primes less than 10000, the first 12-happy primes are (the letters X and E represent the decimal numbers 10 and 11 respectively) :11031, 1233E, 13011, 1332E, 16377, 17367, 17637, 22E8E, 2331E, 233E1, 23955, 25935, 25X8E, 28X5E, 28XE5, 2X8E5, 2E82E, 2E8X5, 31011, 31101, 3123E, 3132E, 31677, 33E21, 35295, 35567, 35765, 35925, 36557, 37167, 37671, 39525, 4878E, 4X7X7, 53567, 55367, 55637, 56357, 57635, 58XX5, 5X82E, 5XX85, 606EE, 63575, 63771, 66E0E, 67317, 67371, 67535, 6E60E, 71367, 71637, 73167, 76137, 7XX47, 82XE5, 82EX5, 8487E, 848E7, 84E87, 8874E, 8X1X7, 8X25E, 8X2E5, 8X5X5, 8XX17, 8XX71, 8E2X5, 8E847, 92355, 93255, 93525, 95235, X1X87, X258E, X285E, X2E85, X85X5, X8X17, XX477, XX585, E228E, E606E, E822E, EX825, ...
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)