Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalized harmonic numbers=== The ''n''th '''generalized harmonic number''' of order ''m'' is given by <math display="block">H_{n,m}=\sum_{k=1}^n \frac{1}{k^m}.</math> (In some sources, this may also be denoted by <math display="inline">H_n^{(m)}</math> or <math display="inline">H_m(n).</math>) The special case ''m'' = 0 gives <math>H_{n,0}= n.</math> The special case ''m'' = 1 reduces to the usual harmonic number: <math display="block">H_{n, 1} = H_n = \sum_{k=1}^n \frac{1}{k}.</math> The limit of <math display="inline">H_{n, m}</math> as {{math|''n'' → ∞}} is finite if {{math|''m'' > 1}}, with the generalized harmonic number bounded by and converging to the [[Riemann zeta function]] <math display="block">\lim_{n\rightarrow \infty} H_{n,m} = \zeta(m).</math> The smallest natural number ''k'' such that ''k<sup>n</sup>'' does not divide the denominator of generalized harmonic number ''H''(''k'', ''n'') nor the denominator of alternating generalized harmonic number ''H′''(''k'', ''n'') is, for ''n''=1, 2, ... : :77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, ... {{OEIS|id=A128670}} The related sum <math>\sum_{k=1}^n k^m</math> occurs in the study of [[Bernoulli number]]s; the harmonic numbers also appear in the study of [[Stirling number]]s. Some integrals of generalized harmonic numbers are <math display="block">\int_0^a H_{x,2} \, dx = a \frac {\pi^2}{6}-H_{a}</math> and <math display="block">\int_0^a H_{x,3} \, dx = a A - \frac {1}{2} H_{a,2},</math> where ''A'' is [[Apéry's constant]] ''ζ''(3), and <math display="block">\sum_{k=1}^n H_{k,m}=(n+1)H_{n,m}- H_{n,m-1} \text{ for } m \geq 0 .</math> Every generalized harmonic number of order ''m'' can be written as a function of harmonic numbers of order <math>m-1</math> using <math display="block">H_{n,m} = \sum_{k=1}^{n-1} \frac {H_{k,m-1}}{k(k+1)} + \frac {H_{n,m-1}}{n} </math> for example: <math>H_{4,3} = \frac {H_{1,2}}{1 \cdot 2} + \frac {H_{2,2}}{2 \cdot 3} + \frac {H_{3,2}}{3 \cdot 4} + \frac {H_{4,2}}{4} </math> A [[generating function]] for the generalized harmonic numbers is <math display="block">\sum_{n=1}^\infty z^n H_{n,m} = \frac {\operatorname{Li}_m(z)}{1-z},</math> where <math>\operatorname{Li}_m(z)</math> is the [[polylogarithm]], and {{math|{{mabs|''z''}} < 1}}. The generating function given above for {{math|1=''m'' = 1}} is a special case of this formula. A '''fractional argument for generalized harmonic numbers''' can be introduced as follows: For every <math>p,q>0</math> integer, and <math>m>1</math> integer or not, we have from polygamma functions: <math display="block">H_{q/p,m}=\zeta(m)-p^m\sum_{k=1}^\infty \frac{1}{(q+pk)^m}</math> where <math>\zeta(m)</math> is the [[Riemann zeta function]]. The relevant recurrence relation is <math display="block">H_{a,m}=H_{a-1,m}+\frac{1}{a^m}.</math> Some special values are<math display="block">\begin{align} H_{\frac{1}{4},2} &= 16-\tfrac{5}{6}\pi^2 -8G\\ H_{\frac{1}{2},2} &= 4-\frac{\pi^2}{3} \\ H_{\frac{3}{4},2} &= \frac{16}{9}-\frac{5}{6}\pi^2 + 8G \\ H_{\frac{1}{4},3} &= 64-\pi^3-27\zeta(3) \\ H_{\frac{1}{2},3} & =8-6\zeta(3) \\ H_{\frac{3}{4},3} &= \left(\frac{4}{3}\right)^3+\pi^3 -27\zeta(3) \end{align}</math>where ''G'' is [[Catalan's constant]]. In the special case that <math>p = 1</math>, we get <math display="block">H_{n,m}=\zeta(m, 1) - \zeta(m, n+1),</math> where <math>\zeta(m, n)</math> is the [[Hurwitz zeta function]]. This relationship is used to calculate harmonic numbers numerically.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)